Application of Large Magnetocaloric Effects in Itinerant-Electron Metamagnets to Cooling Systems

Article Preview

Abstract:

The La(FexSi1-x)13 compounds exhibit large magnetocaloric effects (MCEs) due to the itinerant-electron metamagnetic (IEM) transition. By hydrogen absorption, the Curie temperature TC increases up to room temperature with retaining the IEM transition. The La(Fe0.90Si0.10)13H1.1 compound indicates a large isothermal magnetic entropy change of ∆Sm = - 28 J/kg K at 287 K in the magnetic field change from 0 to 2 T (∆B = 2 T). In addition, the MCEs are enhanced by partial substitution of Ce for La. The value of TC for La(FexSi1-x)13 is decreased by partial substitution of Mn for Fe, keeping excellent MCEs. Consequently, the La(FexSi1-x)13 and their modified compounds are promising as magnetic refrigerants working at a wide range of temperature covering room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-144

Citation:

Online since:

April 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujita,Y. Akamatsu and K. Fukamichi: J. Appl. Phys. Vol. 85 (1999), p.4756.

Google Scholar

[2] S. Fujieda, A. Fujita and K. Fukamichi: Appl. Phys. Lett. Vol. 81 (2002), p.1276.

Google Scholar

[3] A. Fujita, S. Fujieda, K. Fukamichi, Y. Yamazaki and Y. Iijima: Mater. Trans. Vol. 43 (2002), p.1202.

Google Scholar

[4] A. Fujita, S. Fujieda, Y. Hasegawa and K. Fukamichi: Phys. Rev. B Vol. 67 (2003), p.104416.

Google Scholar

[5] S. Fujieda, A. Fujita and K. Fukamichi: Sci. Tech. Adv. Mater. Vol. 4 (2003), p.339.

Google Scholar

[6] S. Fujieda, Y. Hasegawa, A. Fujita and K. Fukamichi: J. Magn. Magn. Mater. Vol. 272-276 (2004) p.2365.

Google Scholar

[7] V. K. Pecharsky and K. A. Gschneidner, Jr: J. Appl. Phys. Vol. 90 (2001) p.4614.

Google Scholar

[8] A. M. Tishin and Y. I. Spichkin: in: The Magnetocaloric Effect and Its Applications, Series in Condensed Matter Physics, IOP, London, (2003).

Google Scholar

[9] T. T. M. Palstra, J. A. Mydosh, G. J. Nieuwenhuys, A. M. Van der Kraan and K. H. J. Buschow: J. Magn. Magn. Mater. Vol. 36 (1983), p.290.

Google Scholar

[10] A. Fujita, K. Fukamichi, M. Yamada and T. Goto: J. Appl. Phys. Vol. 93 (2003), p.7263.

Google Scholar

[11] A. Iandelli and A. Palenzona: in Crystal Chemistry of Intermetallic Compounds, Handbook on the Physics and Chemistry of Rare Earths, edt. By K. A. Gschneidner, Jr and L. Eyring, Vol. 2 Chap. 13 (1979 North Holland).

DOI: 10.1016/s0168-1273(79)02004-3

Google Scholar

[12] S. Fujieda, A. Fujita and K. Fukamichi: J. Alloy. Compnd. (2005), in press.

Google Scholar

[13] H. Yamada: Phys. Rev. B Vol. 47 (1993), p.11211.

Google Scholar

[14] A. Fujita, K. Fukamichi, J. -T. Wang and Y. Kawazoe: Phys. Rev. B Vol. 68 (2003) 104431.

Google Scholar

[15] A. Fujita and K. Fukamichi, IEEE Trans. Magn. Vol. 35 (1999) p.3796.

Google Scholar

[16] S. Fujieda, Y. Hasegawa, A. Fujita and K. Fukamichi: J. Appl. Phys. Vol. 95 (2004), p.2429.

Google Scholar

[17] A. O. Pecharsky, K. A. Gschneidner, Jr. and V. K. Pecharsky: J. Appl. Phys. Vol. 93 (2003), p.4722.

Google Scholar

[18] O. Tegus, E. Brück, L. Zhang, W. Dagula, K. H. J. Buschow, F. R. de Boer: Physica B Vol. 319 (2002), p.174.

DOI: 10.1016/s0921-4526(02)01119-5

Google Scholar

[19] T. Tohei, H. Wada and T. Kanomata: J. Appl. Phys. Vol. 94 (2003), p.1800.

Google Scholar

[20] E. M. Levin, A. O. Pecharsky, V. K. Pecharsky and K. A. Gschneidner, Jr: Phys. Rev. B Vol. 63 (2001), 064426.

Google Scholar