Internal Stress Field in Ultrafine Grained Aluminium Fabricated by Accumulative Roll-Bonding

Article Preview

Abstract:

Internal stress field in a severely deformed aluminium with ultrafine grained microstructure has been studied by convergent-beam electron diffraction (CBED) technique in transmission electron microscopy (TEM). A commercial purity aluminium (99.1%Al) sheet was highly strained by the accumulative roll-bonding (ARB) process to evolve an ultrafine grained structure. Higher-order Laue zone (HOLZ) lines in the incidence disk of the ] 12 1 [ zone axis have been observed at various positions within an identical ultrafine grain. The key finding is that the HOLZ line pattern taken from the vicinity (~50nm) of the grain boundary (lamellar boundary) looses ) 1 1 0 ( mirror symmetry, whereas the pattern from the grain centre has the symmetry. The former and the latter represent the existence of a large non-hydrostatic stress field and a small internal stress field, respectively. The magnitude of the internal stress becomes larger with approaching to a grain boundary.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-128

Citation:

Online since:

April 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Saito, N. Tsuji, H. Utsunomiya and T. Sakai: Acta Mater. vol. 47(1999), p.579.

Google Scholar

[2] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R.G. Hong: Scripta Mater. vol. 39 (1998), p.1221.

Google Scholar

[3] N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa: Scripta mater. vol. 39 (1998), p.1221.

Google Scholar

[4] N. Tsuji, Y. Ito, Y. Saito and Y. Minamino: Scripta Mater. vol. 47 (2002), p.893.

Google Scholar

[5] X. Huang, N. Tsuji, N. Hansen and Y. Minamino: Mater. Sci. Eng. vol. A340 (2003), p.265.

Google Scholar

[6] N. Tsuji, Y. Saito, S-H. Lee and Y. Minamino: Adv. Eng. Mat. vol. 5, p.338.

Google Scholar

[7] Z. Horita, T. Hujinami, M. Nemoto and TG. Langdon: Metall. Mater. Trans. A, vol. 31A (2000), p.691.

Google Scholar

[8] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. vol. 45 (2000), p.103.

Google Scholar

[9] J.C. h. Spence and J.M. Zuo: Electron Microdiffraction (Plenum Press, New York, 1992).

Google Scholar

[10] Q. Liu, X. Huang, D.J. Lloyd and N. Hansen: Acta Mater. vol. 50 (2002), p.3789.

Google Scholar

[11] D.A. Hughes and N. Hansen: Acta Mater. vol. 48 (2000), p.2985.

Google Scholar

[12] R. Ueji, N. Kamikawa, X. Huang, N. Tsuji and N. Hansen: to be submitted to Acta mater.

Google Scholar

[13] Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev and T.G. Langdon: J. Mater. Res. vol. 11 (1996), p.1890.

Google Scholar

[14] Z. Horita, F.J. Sumith, M. Nemoto, R.Z. Valiev and T.G. Langdon: J. Mater. Res. vol. 13 (1998), p.446.

Google Scholar

[15] K. Ikeda, K. Yamada, N. Tanaka, F. Yoshida, H. Nakashima and N. Tsuji: Proc. of the 25th Risø Int. Symp. on Mater. Sci. (2004), p.357.

Google Scholar