Crystal Orientation in High Magnetic Field

Article Preview

Abstract:

A new technology relating to crystal orientation and structure alignment has emerged by the development of superconducting technologies. Now, a high magnetic field covering a rather large space is available even in small-scale laboratories. Under this circumstance it has been found that the crystal orientation in materials can be controlled by imposition of the high magnetic field. This principle due to a magnetization force can be applied not only to magnetic materials but also to non-magnetic materials with asymmetric unit cells. In this paper, three novel processes for the crystal orientation of ceramics and metals are described.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

269-280

Citation:

Online since:

April 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Lu, A. Nagata, K. Watanabe, T. Nojima, K. Sugawara, S. Hanada and S. Kamada: Physica C., 392 (2003), 453-457.

DOI: 10.1016/s0921-4534(03)01164-x

Google Scholar

[2] S. S. He, Y. D. D. Zhang, X. Zhao, L. Zuo, J. C. C. He, K. Watanabe, T. Zhang, G. Nishijima and C. Esling: Adv. Eng. Mater., 5 (2003), 579-583.

DOI: 10.1002/adem.200300387

Google Scholar

[3] P. Chen, H. Maeda, K. Watanabe and M. Motokawa: Physica C, 337 (2000), 160-164.

Google Scholar

[4] P. Chen, H. Maeda, K. Watanabe, M. Motokawa, H. Kitaguchi and H. Kumakura: Physica C, 324 (1999), 172-176.

DOI: 10.1016/s0921-4534(99)00468-2

Google Scholar

[5] P. Chen, H. Maeda, K. Kakimoto, P.X. Zhang, K. Watanabe and M. Motokawa: Physica C, 320 (1999), 96-100.

Google Scholar

[6] M H. Zimmerman, K. T. Faber and Edwin R. Fuller, Jr.: J. Am. Ceram. Soc., 80 (1997), 2725-2729.

Google Scholar

[7] E. Farrel, B.S. Chandrasekhar, M. R. DeGuire, M.M. Fang, V. G. Kogan, J.R. Clem and D. K. Finnemore: Phys. Rev. B, 36 (1987), 4025-4027.

Google Scholar

[8] M. Ferreira, M.B. Maple, H. Zhou, R. R. Hake, B. W. Lee, C. L. Seaman, M. V. Kuric and R. P. Guertin: Appl. Phys. A 7, (1988), 105-110.

Google Scholar

[9] W. Paulik, K. T. Faber and E. R. Fullar Jr.: J. Am. Ceram. Soc., 77 (1994), 454-458.

Google Scholar

[10] K. Inoue, K. Sassa, Y. Yokogawa, Y. Sakka, M. Okido and S. Asai: Materials Transactions, JIM, 44 (2003), 1133-1137.

DOI: 10.2320/matertrans.44.1133

Google Scholar

[11] Y. Sakka, T S. Suzuki, N. Tanabe, S. Asai and K. Kitazawa: Jpn. J. Appl. Phys., 41 (2002), 1416-1418.

Google Scholar

[12] T. Kimura, M. Yamato, W. Koshimizu, M. Koike and T. Kawai: Langmuir, 16(2000)2, 858-861.

DOI: 10.1021/la990761j

Google Scholar

[13] A. E. Mikelson and Ya. Kh. Karkin: J. Cryst. Growth, 52(1981), 524.

Google Scholar

[14] H. Yasuda, K. Tokieda and I. Ohnaka: Mater. Trans. JIM, 41(2000), 1005.

Google Scholar

[15] L. Wehrli: Phys. Kondens. Materie, 8(1968), 94.

Google Scholar

[16] Landolt-Bornstein: Eigenschaften der Materie in ihren Aggregatzstanden, 9 teil, Magnetic Properties I, Springer, Berlin, Heidelberg, Germany, (1962), 1.

Google Scholar

[17] Landolt-Bornstein: Eigenschaften der Materie in ihren Aggregatzstanden, 10 teil, Magnetic Properties I, Springer, Berlin, Heidelberg, Germany, (1967), 2.

Google Scholar

[18] T. S. Suzuki, H. Otsuka, Y. Sakka, K. Hiraga and K. Kitazawa: Jpn. Powder Metal, 47(2000), 1010.

Google Scholar

[19] T. S. Suzuki, Y. Sakka and K. Kitazawa: Adv. Eng. Mater., 3(2001), 490.

Google Scholar

[20] M. Tahashi, M. Ishihara, K. Sassa and S. Asai: Materials Transaction JIM, 44(2003), 285-289.

Google Scholar

[21] M. P. Anderson, D. J. Sroloviz, G. S. Great and P. S. Sahni: Act. Metallurgica, 32(1984) 783-791.

Google Scholar