Stable Dispersions of Aromatic Hydrocarbon Colloidal Particles by Laser Ablation

Article Preview

Abstract:

Dispersions of colloidal particles of polycyclic aromatic hydrocarbons were obtained by nanosecond laser ablation. Aqueous suspensions of micron-sized crystals were irradiated with the second harmonic output of a Nd:YAG laser and converted into colloidal particles. Ionic and nonionic surfactants were used in the ablation process to stabilise the particles. Dispersions with good long term stability were obtained. A strong dependence of particle formation rate on laser fluence was found and the particle formation process is discussed on the basis of UV-Vis spectra and microscopic examination of the crystals.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 514-516)

Pages:

1235-1240

Citation:

Online since:

May 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Clar: Polycyclic Hydrocarbons (Academic Press, New York 1964).

Google Scholar

[2] R.G. Harvey: Polycyclic Aromatic Hydrocarbons (Wiley-VCH, New York 1997).

Google Scholar

[3] H. Oikawa, H. Nakanishi: Optical Properties of Polymer Nanocrystals, in: H. Masuhara, H. Nakanishi, K. Sasaki (Eds. ) Single Organic Nanoparticles ( Springer, Heidelberg 2003).

Google Scholar

[4] H. Toyotama: US Patent 5354563.

Google Scholar

[5] D.L. Brown: US Patent 5958329.

Google Scholar

[6] T. Seko, K. Ogura, Y. Kawakami, H. Sugino, H. Toyotama, J. Tanaka: Chem. Phys. Lett. Vol. 291 (1998), pp.428-444.

Google Scholar

[7] H. Nakanishi, H. Oikawa: Reprecipitation Method for Organic Nanocrystals, in: H. Masuhara, H. Nakanishi, K. Sasaki (Eds. ) Single Organic Nanoparticles ( Springer, Heidelberg 2003).

DOI: 10.1007/978-3-642-55545-9_2

Google Scholar

[8] D. Horn, J. Rieger: Angew. Chem. Int. Ed. Vol. 40 (2001) pp.4330-4361.

Google Scholar

[9] B.Y. Sekunov, P. York: J. Cryst. Growth Vol. 211 (2000) pp.122-136.

Google Scholar

[10] P. Kang, C. Chen, L. Hao, C. Zhu, Y. Hu, Z. Chen: Mater. Res. Bull. Vol. 39 (2004) p.545551.

Google Scholar

[11] Y. Tamaki, T. Asahi, H. Masuhara: Appl. Surf. Sci. Vol. 168 (2000) pp.85-88.

Google Scholar

[12] M. Ullmann, S.K. Friedlander, A. Schmidt-Ott: J. Nanoparticle Res. Vol. 4 (2002) p.499509.

Google Scholar

[13] A. Fojtik, A. Henglein: Ber. Bunsen-Ges. Phys. Chem. Vol. 97 (1993) pp.252-254.

Google Scholar

[14] Y.P. Lee, Y.H. Liu, C.S. Yeh: Phys. Chem. Chem. Phys. Vol 1 (1999) pp.4681-4686.

Google Scholar

[15] Y. Tamaki, T. Asahi, H. Masuhara: J. Phys. Chem. A Vol. 106 (2002) pp.2135-2139.

Google Scholar

[16] H. Masuhara, T. Asahi: Laser Ablation Method for Organic Nanoparticles, in: H. Masuhara, H. Nakanishi, K. Sasaki (Eds. ) Single Organic Nanoparticles ( Springer, Heidelberg 2003).

DOI: 10.1007/978-3-642-55545-9_3

Google Scholar

[17] Y. Tamaki, T. Asahi, H. Masuhara: Jpn. J. Appl. Phys. Vol. 42 (2003) pp.2725-2729.

Google Scholar

[18] T. Sugiyama, T. Asahi, H. Masuhara: Chem. Lett. Vol. 33 (2004) pp.724-725.

Google Scholar

[19] Y.H. Chen, C.S. Yeh: Colloids Surfaces A: Physicochem. Eng. Aspects Vol. 197 (2002) pp.133-139.

Google Scholar

[20] B. Li, T. Kawakami, M. Hiramatsu: Appl. Surf. Sci. Vol. 210 (2003) pp.171-176.

Google Scholar

[21] L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, Chem. Phys. Lett. Vol. 276 (1997) pp.269-273.

Google Scholar

[22] K. Kosswig, H. Stache: Die Tenside (Hanser, München, 1993).

Google Scholar