Effect of Deformation Route and Sc and Zr Addition on Ultra-Fine Grain Formation and Superplasticity in Al-Mg Alloys

Article Preview

Abstract:

Recently the method for obtaining ultra-fine grained metallic materials has developed using severe plastic deformation (SPD), such as equal channel angular pressing (ECAP), accumulative roll bonding (ARB), torsion straining, and warm multiple deformation (WMD) etc. In order to enhance thermal stability of ultra-fine grained aluminum alloys manufactured by SPD process, the addition of Sc and Zr elements has been considered to devise fine Al3Sc, Al3Zr and Al3(Scx Zr1-x) precipitates for inhibiting the grain growth. In this study, the microstructure evolution has been investigated in Al-Mg alloys with and without Sc and Zr addition during the warm multiple deformation process. In addition Al-Mg alloys were compressed at a strain rate of 10-1 sec-1 by two different routes, that is, route A and route B. Route A is to rotate the specimen throughout 90o around the vertical axis of loading direction at every pass. Route B is to rotate the specimen throughout 90o around the parallel axis of loading direction and then rotate it again as route A. The specimen deformed by route B had finer grain size and more uniform distribution of grains than those deformed by route A. When the warm multiple deformation process repeated up to 8 passes at 673 K, the specimen consisted of ultra-fine grained structure with the average grain size less than 3 μm. The superplastic behavior can also be observed at the high strain rate and low temperature regime.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Pages:

847-852

Citation:

Online since:

July 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Kaibyshev, F. Musin, D.R. Lesuer and T.G. Nieh : Mater. Sci. Eng, A342 (2003), p.169.

Google Scholar

[2] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai : Proc. of the 6th Int. Conf. on Aluminum Alloy (ICAA-6), Jpn. Ins. of Light Metal Vol. 3 (1998), p. (2003).

Google Scholar

[3] B.K. Min, H.W. Kim and S.B. Kang : J. Mater. Process. Technol. Vol. 162-163 (2005), p.355.

Google Scholar

[4] R.M. Cleveland, A.K. Ghosh and J.R. Bradley : Mater. Sci. Eng. A351 (2003), p.228.

Google Scholar

[5] F. Musin, R. Kaibyshev, Y. Motohashi and G. Itoh : Scripta Materials 50 (2004), p.511.

Google Scholar