Influence of Scandium Addition on the High Temperature Compressive Strength of Aluminium Alloy 7010

Abstract:

Article Preview

The influence of Sc addition on the high temperature compressive strength of a commercial alloy 7010 (hereafter termed base alloy) has been examined. The base alloy, and the base alloy with 0.23 wt% Sc were cast, homogenized and subjected to compression tests at temperatures ranging from 300 to 450oC and strain rates of 10-3, 10-2, 10-1 and 1 sec-1. It is shown that Sc addition to the base alloy increases the compressive flow stress under these deformation conditions. The increase in peak flow stress is nearly 3-6 times the peak flow stress of the base alloy at temperatures 300-350oC over the strain rate range investigated. Whilst, at temperatures ³ 400oC, the flow stresses decrease significantly irrespective of the strain rate used. Transmission electron microscopy (TEM) revealed that a combination of (1) increased nucleation frequency of dispersoids, (2) evolution of smaller subgrain size, and (3) refinement of alloy phases in the Al-Zn-Mg-Cu system contribute to superior strengthening in the alloy containing Sc. Whilst, it is primarily a combination of coarsening and instability of the alloy phases in the Al-Zn-Mg-Cu system that dramatically reduces the flow stresses in both the alloys at temperatures ³ 400oC.

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd

Pages:

871-876

Citation:

A.K. Mukhopadhyay et al., "Influence of Scandium Addition on the High Temperature Compressive Strength of Aluminium Alloy 7010", Materials Science Forum, Vols. 519-521, pp. 871-876, 2006

Online since:

July 2006

Export:

Price:

$38.00

[1] L.S. Toropova, D.G. Eskin, M.L. Kharakterova, T.V. Dobatkina: Advanced Aluminium Alloys Containing Scandium: Structure and Properties, Gordon and Breach Science Publishers, The Netherlands (1998).

[2] V.G. Davydov, V.I. Yelagin, V.V. Zakharov, T.V. Rostova: Metallovedenie I Termicheskaya Obrabotka Metallov, Vol. 8 (1996), p.25.

[3] A.K. Mukhopadhyay, G.M. Reddy, K.S. Prasad, S.V. Kamat, A. Dutta, C. Mondol J.T. Staley Honorary Symposium on Al Alloys, (ed. M. Tiryakioglu), Indianapolis, USA, 5-8 November 2001, ASM International (2001), p.63.

[4] A.K. Mukhopadhyay and G.M. Reddy: Mater. Sci. Forum, Vol. 396-402 (2002), p.1665.

[5] G.M. Reddy, A.K. Mukhopadhyay and A.S. Rao: Sci. and Technol. of Welding and Joining, Vol. 10 (2005), p.432.

[6] Y.V. Milman, D.V. Lotsko, O.I. Sirko: Mater. Sci. Forum, Vol. 331-337 (2000), p.1107.

[7] G.I. Eskin: Technologia Legkikh Splavov, Vol. 2 (2000), p.17.

[8] K.S. Prasad, A.K. Mukhopadhyay and Vydehi Joshi: Z. Metallkunde, Vol. 11 (2004), p.1046.

[9] B. Forbord, H. Hallem and K. Marthinsen: Proc. ICAA 9 (eds. J.F. Nie, A.J. Morton and B.C. Muddle), Inst. of Mater. Engg. Australasia Ltd. (2004), p.1263.

[10] ASTM E9-89a, ASTM Annual Book of Standard, 03. 01 (2004), p.110.

[11] P.B. Hirsch, A. Howie, R. Nicholson, D.W. Pashley and M.J. Whelan: Electron Microscopy of Thin Crystals, R.E. Krieger Publishing Company, Florida (1977), p.328.

[12] R.W. Hyland, Jr., M. Asta, S.M. Foiles and C.L. Rohrer: Acta Mater., Vol. 46 (1998), p.3667.

[13] W. Hume-Rothery and G.V. Raynor: The structure and Metals of Alloys, The Institute of Metals, Monograph and Report Series No. 1 (1962), p.92.

[14] L. Lae, P. Guyot and C. Sigli: Proc. ICAA 9 (eds. J.F. Nie, A.J. Morton and B.C. Muddle), Inst. of Mater. Engg. Australasia Ltd. (2004), p.281.

[15] H.J. McQueen: Hot Deformation of Al Alloys (eds. T.G. Langdon, H.D. Merchant, J.G. Morris and M.A. Zaidi), The minerals, Metals and Materials Society (1991), p.31 and p.105.