Influence of Scandium Addition on the High Temperature Compressive Strength of Aluminium Alloy 7010

Abstract:

Article Preview

The influence of Sc addition on the high temperature compressive strength of a commercial alloy 7010 (hereafter termed base alloy) has been examined. The base alloy, and the base alloy with 0.23 wt% Sc were cast, homogenized and subjected to compression tests at temperatures ranging from 300 to 450oC and strain rates of 10-3, 10-2, 10-1 and 1 sec-1. It is shown that Sc addition to the base alloy increases the compressive flow stress under these deformation conditions. The increase in peak flow stress is nearly 3-6 times the peak flow stress of the base alloy at temperatures 300-350oC over the strain rate range investigated. Whilst, at temperatures ³ 400oC, the flow stresses decrease significantly irrespective of the strain rate used. Transmission electron microscopy (TEM) revealed that a combination of (1) increased nucleation frequency of dispersoids, (2) evolution of smaller subgrain size, and (3) refinement of alloy phases in the Al-Zn-Mg-Cu system contribute to superior strengthening in the alloy containing Sc. Whilst, it is primarily a combination of coarsening and instability of the alloy phases in the Al-Zn-Mg-Cu system that dramatically reduces the flow stresses in both the alloys at temperatures ³ 400oC.

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd

Pages:

871-876

DOI:

10.4028/www.scientific.net/MSF.519-521.871

Citation:

A.K. Mukhopadhyay, K. S. Prasad, A. Dutta, "Influence of Scandium Addition on the High Temperature Compressive Strength of Aluminium Alloy 7010", Materials Science Forum, Vols. 519-521, pp. 871-876, 2006

Online since:

July 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.