Influence of Scandium Addition on the High Temperature Compressive Strength of Aluminium Alloy 7010

Abstract:

Article Preview

The influence of Sc addition on the high temperature compressive strength of a commercial alloy 7010 (hereafter termed base alloy) has been examined. The base alloy, and the base alloy with 0.23 wt% Sc were cast, homogenized and subjected to compression tests at temperatures ranging from 300 to 450oC and strain rates of 10-3, 10-2, 10-1 and 1 sec-1. It is shown that Sc addition to the base alloy increases the compressive flow stress under these deformation conditions. The increase in peak flow stress is nearly 3-6 times the peak flow stress of the base alloy at temperatures 300-350oC over the strain rate range investigated. Whilst, at temperatures ³ 400oC, the flow stresses decrease significantly irrespective of the strain rate used. Transmission electron microscopy (TEM) revealed that a combination of (1) increased nucleation frequency of dispersoids, (2) evolution of smaller subgrain size, and (3) refinement of alloy phases in the Al-Zn-Mg-Cu system contribute to superior strengthening in the alloy containing Sc. Whilst, it is primarily a combination of coarsening and instability of the alloy phases in the Al-Zn-Mg-Cu system that dramatically reduces the flow stresses in both the alloys at temperatures ³ 400oC.

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd

Pages:

871-876

DOI:

10.4028/www.scientific.net/MSF.519-521.871

Citation:

A.K. Mukhopadhyay et al., "Influence of Scandium Addition on the High Temperature Compressive Strength of Aluminium Alloy 7010", Materials Science Forum, Vols. 519-521, pp. 871-876, 2006

Online since:

July 2006

Export:

Price:

$35.00

[1] L.S. Toropova, D.G. Eskin, M.L. Kharakterova, T.V. Dobatkina: Advanced Aluminium Alloys Containing Scandium: Structure and Properties, Gordon and Breach Science Publishers, The Netherlands (1998).

[2] V.G. Davydov, V.I. Yelagin, V.V. Zakharov, T.V. Rostova: Metallovedenie I Termicheskaya Obrabotka Metallov, Vol. 8 (1996), p.25.

[3] A.K. Mukhopadhyay, G.M. Reddy, K.S. Prasad, S.V. Kamat, A. Dutta, C. Mondol J.T. Staley Honorary Symposium on Al Alloys, (ed. M. Tiryakioglu), Indianapolis, USA, 5-8 November 2001, ASM International (2001), p.63.

[4] A.K. Mukhopadhyay and G.M. Reddy: Mater. Sci. Forum, Vol. 396-402 (2002), p.1665.

[5] G.M. Reddy, A.K. Mukhopadhyay and A.S. Rao: Sci. and Technol. of Welding and Joining, Vol. 10 (2005), p.432.

[6] Y.V. Milman, D.V. Lotsko, O.I. Sirko: Mater. Sci. Forum, Vol. 331-337 (2000), p.1107.

[7] G.I. Eskin: Technologia Legkikh Splavov, Vol. 2 (2000), p.17.

[8] K.S. Prasad, A.K. Mukhopadhyay and Vydehi Joshi: Z. Metallkunde, Vol. 11 (2004), p.1046.

[9] B. Forbord, H. Hallem and K. Marthinsen: Proc. ICAA 9 (eds. J.F. Nie, A.J. Morton and B.C. Muddle), Inst. of Mater. Engg. Australasia Ltd. (2004), p.1263.

[10] ASTM E9-89a, ASTM Annual Book of Standard, 03. 01 (2004), p.110.

[11] P.B. Hirsch, A. Howie, R. Nicholson, D.W. Pashley and M.J. Whelan: Electron Microscopy of Thin Crystals, R.E. Krieger Publishing Company, Florida (1977), p.328.

[12] R.W. Hyland, Jr., M. Asta, S.M. Foiles and C.L. Rohrer: Acta Mater., Vol. 46 (1998), p.3667.

[13] W. Hume-Rothery and G.V. Raynor: The structure and Metals of Alloys, The Institute of Metals, Monograph and Report Series No. 1 (1962), p.92.

[14] L. Lae, P. Guyot and C. Sigli: Proc. ICAA 9 (eds. J.F. Nie, A.J. Morton and B.C. Muddle), Inst. of Mater. Engg. Australasia Ltd. (2004), p.281.

[15] H.J. McQueen: Hot Deformation of Al Alloys (eds. T.G. Langdon, H.D. Merchant, J.G. Morris and M.A. Zaidi), The minerals, Metals and Materials Society (1991), p.31 and p.105.

In order to see related information, you need to Login.