TDS Measurement of Hydrogen Released from Stainless Steel Oxidized in H2O-Containing Atmospheres

Article Preview

Abstract:

Hydrogen dissolved in the Cr2O3 scale formed on the stainless steel in the H2O-containing atmospheres is observed by TDS (thermal desorption spectroscopy) measurements. The amount of dissolved hydrogen in the Cr2O3 scale reaches a maximum about 0.32 mol% when the H2O concentration in the gas reaches 20%. It was found from GDS (glow discharge spectroscopy) measurements that hydrogen may exist at the oxide scale / substrate interface or in Cr2O3 scale bounded that interface. However, results from the Vickers hardness and the observation of scale morphology by SEM (scanning electron microscopy), hydrogen dissolved in the Cr2O3 scale would have little effect on a decrease in the mechanical property of the Cr2O3 scale. Therefore, hydrogen dissolved in the Cr2O3 scale may not be main factor of the deterioration of the Cr2O3 scale.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 522-523)

Pages:

163-170

Citation:

Online since:

August 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. T. Fujii and R. A. Meussner, J. Electrochem. Soc. Vol. 111 (1964), p.1215.

Google Scholar

[2] A. Rahmel and J. Tobolski, Corros. Sci. Vol. 5 (1965), p.333.

Google Scholar

[3] K. Kusabiraki, T. Sugihara, and T. Ooka, Tetsu-to-Hagane Vol. 77 (1991), p.123.

Google Scholar

[4] A. Yamauchi, K. Kurokawa, H. Takahashi, and Y. Takada: J. Japan Inst. Metals Vol. 64 (2000), p.359.

Google Scholar

[5] A. Yamauchi, K. Kurokawa, H. Takahashi, and Y. Takada: Materials at High Temperatures Vol. 18 (2001), p.111 N2-3%O2 (N2-3%O2)-19. 7%H2O a b.

Google Scholar

[6] C. S. Tedmond Jr.: J. Electrochem. Soc. Vol. 113 (1966), p.766.

Google Scholar

[7] H. C. Graham and H. H. Davis: J. Amer. Ceram. Soc. Vol. 54 (1971), p.89.

Google Scholar

[8] C. A. Stearns, F. J. Kohl, and G. C. Fryburg: J. Electrochem. Soc. Vol. 121 (1974), p.945.

Google Scholar

[9] Y-W Kim, and G. R. Belton: Met. Trans. Vol. 5 (1974), p.1811.

Google Scholar

[10] B. B. Ebbinghaus: Combust. Flame Vol. 93 (1993), p.119.

Google Scholar

[11] H. Asteman, J. -E. Svensson, L. -G. Johansson, and M. Norell: Oxid. Met. Vol. 52 (1999), p.95.

Google Scholar

[12] H. Asteman, J. -E. Svensson, M. Norell, and L. -G. Johansson: Oxid. Met. Vol. 54 (2000), p.11.

Google Scholar

[13] A. Yamauchi, K. Kurokawa, and H. Takahashi: Oxid. Met. Vol. 59 (2003), p.517.

Google Scholar

[14] I. Kvernes, M. Oliveira, and P. Kofstad: Corros. Sci. Vol. 17 (1977), p.237.

Google Scholar

[15] P. Kofstad: Oxid. Met. Vol. 24 (1985), p.265.

Google Scholar

[16] P. Kofstad: High-Temperature Corrosion, (Elsevier Applied Science, London 1988).

Google Scholar

[17] S. Jianian, Z. Longjiang and L. Tiefan: Oxid. Met. Vol. 48 (1997), p.347.

DOI: 10.1007/bf01670507

Google Scholar

[18] T. Norby: J. Phys. � Vol. 3 (1993), p.99.

Google Scholar

[19] G. Hultquist, B. Tveten, and E. Hornlund: Oxid. Met. Vol. 54 (2000), p.1.

Google Scholar

[20] B. Tveten, G. Hultquist, and T. Norby: Oxid. Met. Vol. 52 (1999), p.221.

Google Scholar

[21] B. Tveten, G. Hultquist, and D. Wallinder: Oxid. Met. Vol. 55 (2001), p.279.

Google Scholar

[22] H. Yanagihara, I. Fujita, T. Hino and T. Yamashina: J. Nucl. Mater. Vol. 220-222 (1995), p.856.

Google Scholar

[23] H. Yanagihara, Y. Yamauchi, T. Hino, Y. Hirohata, and T. Yamashina: J. Nucl. Mater. Vol. 241-243 (1997), p.1098.

Google Scholar

[24] Y. Aihara: Master Eng. Thesis, Hokkaido University, (1996).

Google Scholar