TDS Measurement of Hydrogen Released from Stainless Steel Oxidized in H2O-Containing Atmospheres

Abstract:

Article Preview

Hydrogen dissolved in the Cr2O3 scale formed on the stainless steel in the H2O-containing atmospheres is observed by TDS (thermal desorption spectroscopy) measurements. The amount of dissolved hydrogen in the Cr2O3 scale reaches a maximum about 0.32 mol% when the H2O concentration in the gas reaches 20%. It was found from GDS (glow discharge spectroscopy) measurements that hydrogen may exist at the oxide scale / substrate interface or in Cr2O3 scale bounded that interface. However, results from the Vickers hardness and the observation of scale morphology by SEM (scanning electron microscopy), hydrogen dissolved in the Cr2O3 scale would have little effect on a decrease in the mechanical property of the Cr2O3 scale. Therefore, hydrogen dissolved in the Cr2O3 scale may not be main factor of the deterioration of the Cr2O3 scale.

Info:

Periodical:

Materials Science Forum (Volumes 522-523)

Edited by:

Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara

Pages:

163-170

DOI:

10.4028/www.scientific.net/MSF.522-523.163

Citation:

A. Yamauchi et al., "TDS Measurement of Hydrogen Released from Stainless Steel Oxidized in H2O-Containing Atmospheres", Materials Science Forum, Vols. 522-523, pp. 163-170, 2006

Online since:

August 2006

Export:

Price:

$35.00

[1] C. T. Fujii and R. A. Meussner, J. Electrochem. Soc. Vol. 111 (1964), p.1215.

[2] A. Rahmel and J. Tobolski, Corros. Sci. Vol. 5 (1965), p.333.

[3] K. Kusabiraki, T. Sugihara, and T. Ooka, Tetsu-to-Hagane Vol. 77 (1991), p.123.

[4] A. Yamauchi, K. Kurokawa, H. Takahashi, and Y. Takada: J. Japan Inst. Metals Vol. 64 (2000), p.359.

[5] A. Yamauchi, K. Kurokawa, H. Takahashi, and Y. Takada: Materials at High Temperatures Vol. 18 (2001), p.111 N2-3%O2 (N2-3%O2)-19. 7%H2O a b.

[6] C. S. Tedmond Jr.: J. Electrochem. Soc. Vol. 113 (1966), p.766.

[7] H. C. Graham and H. H. Davis: J. Amer. Ceram. Soc. Vol. 54 (1971), p.89.

[8] C. A. Stearns, F. J. Kohl, and G. C. Fryburg: J. Electrochem. Soc. Vol. 121 (1974), p.945.

[9] Y-W Kim, and G. R. Belton: Met. Trans. Vol. 5 (1974), p.1811.

[10] B. B. Ebbinghaus: Combust. Flame Vol. 93 (1993), p.119.

[11] H. Asteman, J. -E. Svensson, L. -G. Johansson, and M. Norell: Oxid. Met. Vol. 52 (1999), p.95.

[12] H. Asteman, J. -E. Svensson, M. Norell, and L. -G. Johansson: Oxid. Met. Vol. 54 (2000), p.11.

[13] A. Yamauchi, K. Kurokawa, and H. Takahashi: Oxid. Met. Vol. 59 (2003), p.517.

[14] I. Kvernes, M. Oliveira, and P. Kofstad: Corros. Sci. Vol. 17 (1977), p.237.

[15] P. Kofstad: Oxid. Met. Vol. 24 (1985), p.265.

[16] P. Kofstad: High-Temperature Corrosion, (Elsevier Applied Science, London 1988).

[17] S. Jianian, Z. Longjiang and L. Tiefan: Oxid. Met. Vol. 48 (1997), p.347.

[18] T. Norby: J. Phys. � Vol. 3 (1993), p.99.

[19] G. Hultquist, B. Tveten, and E. Hornlund: Oxid. Met. Vol. 54 (2000), p.1.

[20] B. Tveten, G. Hultquist, and T. Norby: Oxid. Met. Vol. 52 (1999), p.221.

[21] B. Tveten, G. Hultquist, and D. Wallinder: Oxid. Met. Vol. 55 (2001), p.279.

[22] H. Yanagihara, I. Fujita, T. Hino and T. Yamashina: J. Nucl. Mater. Vol. 220-222 (1995), p.856.

[23] H. Yanagihara, Y. Yamauchi, T. Hino, Y. Hirohata, and T. Yamashina: J. Nucl. Mater. Vol. 241-243 (1997), p.1098.

[24] Y. Aihara: Master Eng. Thesis, Hokkaido University, (1996).

In order to see related information, you need to Login.