High Temperature Oxidation of TiAl-1.5wt.%Mn-(0, 5, 10)wt.%Y2O3 Alloys

Article Preview

Abstract:

TiAl-Mn-(0,5,10) wt.%Y2O3 alloys were prepared by the MA-SPS process, and their oxidation behavior was studied between 800 and 1000oC in 1 atm of air. The added Y2O3 particles were segregated along the matrix grain boundaries. The addition of (5~10) wt.%Y2O3, viz. (0.9~1.8) mol%Y2O3 increased the tendency to form the rutile phase along the grain boundaries, resulting in the increment of the oxidation rate and decrement of scale adherence. Mn was oxidized to Mn2O3. The primary mode of scale growth was the outward diffusion of Ti and Mn cations for the outer TiO2 scale, and the inward transport of oxygen anions for the inner (TiO2+Al2O3) mixed scale.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 522-523)

Pages:

649-656

Citation:

Online since:

August 2006

Authors:

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Kasahara, K. Hashimoto, H. Doi and T. Tsujimoto: J. Japan Inst. Metals, Vol. 54 (1990) p.948.

Google Scholar

[2] Y. Shida and H. Anada: Oxid. Met, Vol. 45 (1996) p.197.

Google Scholar

[3] K. Shibue, M. Kumagai and M. S. Kim: J. Japan Inst. Metals, Vol. 56 (1992) p.1457.

Google Scholar

[4] Y. Wu and S.K. Hwang: Acta Mater. Vol. 50 (2002) p.1479.

Google Scholar

[5] Y. Wu and S.K. Hwang: Mater. Lett. Vol. 58 (2004) p. (2067).

Google Scholar

[6] Y. Wu, K. Hagihara and Y. Umakoshi: Intermetallics, Vol. 12 (2004) p.519.

Google Scholar

[7] M. K. Lei, X. P. Zhu and X. J. Wang: Oxid. Met. Vol. 58 (2002) p.361.

Google Scholar

[8] J. X. Song, Y. F. Han and C. B. Xiao: Mater. Sci. Forum, 475/479 (2005) p.767.

Google Scholar

[9] Y. Kobayashi and F. Tsukihashi: Metall. Trans. B, Vol. 29 (1998) p.1037.

Google Scholar

[10] H. Hashimoto: Materia, Vol. 38 (1999) p.68.

Google Scholar

[11] D. B. Lee, Y. D. Jang and M. Nakamura: Mater. Tran, Vol. 43 (2002) p.2531.

Google Scholar

[12] H. G. Jung and K.Y. Kim: Oxid. Met. Vol. 49 (1998) p.403.

Google Scholar

[13] B. A. Pint, P. F. Tortorelli and I. G. Wright: Oxidation of Intermetallics, ed. H. J. Grabke, M. Schutze, Wiley-VCH, NY (1997) p.183.

Google Scholar

[14] B. A. Pint, K. B. Alexander and P. F. Tortorelli: MRS Symp. Proc. Vol. 364, Materials Research Society (1995) 1315.

Google Scholar

[15] B. A. Pint, K. B. Alexander and P. F. Tortorelli: MRS Symp. Proc., Vol. 364, Materials Research Society (1995) p.987.

Google Scholar

[16] V. A. C. Haanappel, J. D. Sunderkotter and M. F. Stroosnijder: Intermetallics Vol. 7 (1999) p.529.

Google Scholar

[17] W. D. Kingery, H. D. Bowen, D. R. Uhlmann: Introduction to Ceramics, John Wiley & Sons, NY (1976) p.240.

Google Scholar

[18] B. A. Pint and L. W. Hobbs: Oxid. Met. Vol. 61 (2004) p.273.

Google Scholar

[19] S. Chevalier, G. Bonnet, G. Borchardt, J. C. Colson and J. P. Larpin: Mater. Sci. Forum, Vol. 369 (2001) p.327.

Google Scholar