Design of the Particle Size Composition of an Alumina Powder Matrix for Maximum Flowability and Minimum Water Content

Article Preview

Abstract:

In this work, commercial alumina fine powders were used as raw materials, namely two tabular alumina fractions (–500 mesh and –230 mesh) and a reactive alumina. Statistical modelling and the Response Surface Methodology (Statistica, Mixtures Designs and Triangular Surfaces module) were applied to three-component mixtures and used to calculate the various property-composition surfaces. To that aim, the various mixtures were prepared, cast, dried, fired and characterised. The particle size distribution modulus, q, was determined for all mixtures using the software LISA. The various response surfaces were then combined, so that the water content in the mixture could be minimised and the matrix flowability maximised. The properties of the resulting test-bricks (linear shrinkage, mechanical strength, apparent density and porosity) were also modelled and response surfaces were obtained. Combined results enabled the definition of an optimised particle size composition range, which guarantees the presence of a low water flow-bed that enables the aggregate self-flow.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 530-531)

Pages:

425-430

Citation:

Online since:

November 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.P. Silva, A.M. Segadães, T.C. Devezas: Relações Entre Distribuição Granulométrica, Morfologia e Empacotamento de Partículas Num Sistema Real: AltaAlumina, Proceedings of 47 CBC, João Pessoa-PB, Brazil (2003), pp.150-161 (in Portuguese).

Google Scholar

[2] A.P. Silva, A.M. Segadães, T.C. Devezas: Aplicação de Métodos Estatísticos na Optimização da Densidade de Empacotamento de Distribuições de Pós de Alumina, Cerâmica, 50.

DOI: 10.1590/s0366-69132004000400010

Google Scholar

[316] (2004), pp.345-354 (in Portuguese).

Google Scholar

[3] J.E. Funk, D.R. Dinger: Predictive Process Control of Crowded Particulate Suspensions - Applied to Ceramic Manufacturing, Kluwer Academic Plub., (1994).

DOI: 10.1007/978-1-4615-3118-0

Google Scholar

[4] I.R. Oliveira, A.R. Studart, R.G. Pileggi, V.C. Pandolfelli, Dispersão e Empacotamento de Partículas - Princípios e Aplicações em Processamento Cerâmico, Faz. Arte Editorial, S. Paulo, 2000 (in Portuguese).

Google Scholar

[5] R.G. Pileggi, A.R. Studart, J. Gallo, V.C. Pandolfelli: How Mixing Affects the Rheology of Refractory Castables, Part 1, Am. Ceram. Soc. Bul., 80.

Google Scholar

[6] (2001), pp.27-31.

Google Scholar

[6] R.G. Pileggi, A.R. Studart, J. Gallo, V.C. Pandolfelli: How Mixing Affects the Rheology of Refractory Castables, Part 2, Am. Ceram. Soc. Bul., 80.

Google Scholar

[7] (2001), pp.38-42.

Google Scholar

[7] A.P. Silva, A.M. Segadães, T.C. Devezas: Statistical modelling of the particle size composition of an alumina matrix for no-cement self-flowing refractory castables, Mater. Sci. Forum, 2005 (accepted).

DOI: 10.4028/www.scientific.net/msf.514-516.604

Google Scholar

[8] J. Cornell: Experiments with Mixtures, 3rd Ed. (John Wiley & Sons, NY 2002).

Google Scholar

[9] Statistica for Windows 5. 5, Comp. Prog. Manual, StatSoft, www. statsoft. com, (USA 2000).

Google Scholar

[10] S. L Correia, D. Hotza, A.M. Segadães: Application of mathematical and statistical strategies to optimize ceramic bodies: effects of raw materials on the technological properties, Ceram. Forum Int., 82 [1-2] (2005) p. E39-E43.

Google Scholar

[11] Lisa Size Distribuition Analyser 2. 0, Elkem ITS & Elkem Materials Refractories, www. material. elkem. com.

Google Scholar

[12] A.R. Pardo, R.G. Pileggi, V.C. Pandolfelli: Novo método para seleção de dispersantes de última geração para concretos refractários, Cerâmica, 48.

DOI: 10.1590/s0366-69132002000400007

Google Scholar

[308] (2002), pp.206-211 (in Portuguese).

Google Scholar