Processing Routes for Obtaining Novel High Performance Mn-Containing PM Steels

Article Preview

Abstract:

A Mn-containing master alloy (MA) has been specially designed, through thermodynamic and metallurgical criteria, for obtaining high performance low alloy PM steels by SPSS or DPDS. This MA exhibits improved characteristics with respect to ferromanganese and other Mn carriers for alloying PM steels preventing oxidation, keeping a high compressibility of the powder mixture and providing opportunities for low temperature processing. The improved sinterability through the formation of a transient liquid phase leads to dimensional stability and high reproducibility of mechanical properties after sintering at 1120°C. The microstructural development of the PM steels was studied during the sintering cycles. The final microstructure of these PM steels, after defined sintering cycles, was characterised by LOM while the mechanical properties of the consolidated materials were determined by tensile testing.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 534-536)

Pages:

705-708

Citation:

Online since:

January 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. M. Kaufman, Modern developments in Powder Met., 6, 265 (1974).

Google Scholar

[2] G. Zapf, G. Hoffmann, K. Dalal, Powder Metallurgy 18, 214 (1975).

Google Scholar

[3] S. Banerjee, V. Gemenetzis, F. Thümmler, Powder Metallurgy, 126 (1980).

Google Scholar

[4] A. Salak, Powder Metallurgy International 12, 28 (1980).

Google Scholar

[5] A. Salak, Powder Metallurgy International 12, 72 (1980).

Google Scholar

[6] A. Salak, Modern developments in Powder Met., 13, 183 (1981).

Google Scholar

[7] A. N. Klein, R. Oberacker, F. Thümmler, Sintering ´85, Plenum Press, ed by G. C. Kuczynski et. al., 343 (1985).

Google Scholar

[8] A. N. Klein, R. Oberacker, F. Thümmler, Powder Metallurgy International 17, 71 (1985).

Google Scholar

[9] S. Unami, O. Furukimi, J. of the Japan Society of Powder and Powder Metallurgy 40, 630 (1993).

Google Scholar

[10] S. Mocarski, D. W. Hall, R. A. Chernenkoff, D. A. Yaeger, C. O. McHugh, Powder Metallurgy, 39, 130 (1996).

Google Scholar

[11] S. C. Mitchell, A. S. Wronski, A. Cias, M. Stoytchev, Advances in Powder Metallurgy and Particulate Materials 2, 129 (1999).

Google Scholar

[12] A. Salak, M. Selecka, R. Bures, Powder Metallurgy Progress 1, 41 (2001).

Google Scholar

[13] M. Sarasola, T. Gómez-Acebo, F. Castro, Procs. of European Congress on Powder Metallurgy, Nice, France 2001, 266-271.

Google Scholar

[14] T. Pieczonka, M. Stoytchev, S. C. Mitchell, Procs. of European Congress on Powder Metallurgy, Nice, France 2001, 316-321.

Google Scholar

[15] A. Salak, M. Selecka, L. Parilak, J of Materials Processing Technology, 143-144, 18 (2003).

Google Scholar

[16] V. Sinka, M. Selecka, A. Salak, Materials Science Forum 416-418, 455 (2003).

Google Scholar

[17] Z. Zhang, R. Sandström, Journal of Alloys and Compounds, 363, 194 (2004).

Google Scholar

[18] P. Beiss, Advances in Powder Metallurgy and Particulate Materials, CD in preparation (2005).

Google Scholar

[19] E. Dudrova, M. Kabatova, R. Bidulsky, A. S. Wronski, Powder Met., 47, 180 (2004).

Google Scholar

[20] A. Salak, M. Selecka, L. Parilak, Procs. of Europen Congress on Powder Metallurgy, Nice, France 2001, 251-256.

Google Scholar

[21] M. Gagne, Y. Trudel, Advances in Powder Metallurgy 4, 115 (1991).

Google Scholar

[22] A. Salak, The International Journal of Powder Metallurgy & Powder Technology 16, 369 (1980).

Google Scholar

[23] S. Unami, S. Uenosono, Kawasaki steel Technical Report Nº 43, 29 (2000).

Google Scholar

[24] A. N. Klein, F. Thümmler, R. Oberacker, Metal Powder Report 39, 335 (1984).

Google Scholar