Processing Routes for Obtaining Novel High Performance Mn-Containing PM Steels

Abstract:

Article Preview

A Mn-containing master alloy (MA) has been specially designed, through thermodynamic and metallurgical criteria, for obtaining high performance low alloy PM steels by SPSS or DPDS. This MA exhibits improved characteristics with respect to ferromanganese and other Mn carriers for alloying PM steels preventing oxidation, keeping a high compressibility of the powder mixture and providing opportunities for low temperature processing. The improved sinterability through the formation of a transient liquid phase leads to dimensional stability and high reproducibility of mechanical properties after sintering at 1120°C. The microstructural development of the PM steels was studied during the sintering cycles. The final microstructure of these PM steels, after defined sintering cycles, was characterised by LOM while the mechanical properties of the consolidated materials were determined by tensile testing.

Info:

Periodical:

Materials Science Forum (Volumes 534-536)

Edited by:

Duk Yong Yoon, Suk-Joong L. Kang, Kwang Yong Eun and Yong-Seog Kim

Pages:

705-708

Citation:

F. Castro et al., "Processing Routes for Obtaining Novel High Performance Mn-Containing PM Steels ", Materials Science Forum, Vols. 534-536, pp. 705-708, 2007

Online since:

January 2007

Export:

Price:

$38.00

[1] S. M. Kaufman, Modern developments in Powder Met., 6, 265 (1974).

[2] G. Zapf, G. Hoffmann, K. Dalal, Powder Metallurgy 18, 214 (1975).

[3] S. Banerjee, V. Gemenetzis, F. Thümmler, Powder Metallurgy, 126 (1980).

[4] A. Salak, Powder Metallurgy International 12, 28 (1980).

[5] A. Salak, Powder Metallurgy International 12, 72 (1980).

[6] A. Salak, Modern developments in Powder Met., 13, 183 (1981).

[7] A. N. Klein, R. Oberacker, F. Thümmler, Sintering ´85, Plenum Press, ed by G. C. Kuczynski et. al., 343 (1985).

[8] A. N. Klein, R. Oberacker, F. Thümmler, Powder Metallurgy International 17, 71 (1985).

[9] S. Unami, O. Furukimi, J. of the Japan Society of Powder and Powder Metallurgy 40, 630 (1993).

[10] S. Mocarski, D. W. Hall, R. A. Chernenkoff, D. A. Yaeger, C. O. McHugh, Powder Metallurgy, 39, 130 (1996).

[11] S. C. Mitchell, A. S. Wronski, A. Cias, M. Stoytchev, Advances in Powder Metallurgy and Particulate Materials 2, 129 (1999).

[12] A. Salak, M. Selecka, R. Bures, Powder Metallurgy Progress 1, 41 (2001).

[13] M. Sarasola, T. Gómez-Acebo, F. Castro, Procs. of European Congress on Powder Metallurgy, Nice, France 2001, 266-271.

[14] T. Pieczonka, M. Stoytchev, S. C. Mitchell, Procs. of European Congress on Powder Metallurgy, Nice, France 2001, 316-321.

[15] A. Salak, M. Selecka, L. Parilak, J of Materials Processing Technology, 143-144, 18 (2003).

[16] V. Sinka, M. Selecka, A. Salak, Materials Science Forum 416-418, 455 (2003).

[17] Z. Zhang, R. Sandström, Journal of Alloys and Compounds, 363, 194 (2004).

[18] P. Beiss, Advances in Powder Metallurgy and Particulate Materials, CD in preparation (2005).

[19] E. Dudrova, M. Kabatova, R. Bidulsky, A. S. Wronski, Powder Met., 47, 180 (2004).

[20] A. Salak, M. Selecka, L. Parilak, Procs. of Europen Congress on Powder Metallurgy, Nice, France 2001, 251-256.

[21] M. Gagne, Y. Trudel, Advances in Powder Metallurgy 4, 115 (1991).

[22] A. Salak, The International Journal of Powder Metallurgy & Powder Technology 16, 369 (1980).

[23] S. Unami, S. Uenosono, Kawasaki steel Technical Report Nº 43, 29 (2000).

[24] A. N. Klein, F. Thümmler, R. Oberacker, Metal Powder Report 39, 335 (1984).

Fetching data from Crossref.
This may take some time to load.