On the Size of Representative Volume Element in Elastic, Plastic, Thermoelastic and Permeable Random Microstructures

Article Preview

Abstract:

The Representative Volume Element (so-called RVE) is the corner stone of continuum mechanics. In this paper we examine the scaling to RVE in linear elasticity, finite elasticity, elasto-plasticity, thermoelasticity, and permeability of random composite materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

201-206

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Hill: J. Mech. Phys. Solids Vol. 11 (1963), pp.357-372.

Google Scholar

[2] C. Huet: J. Mech. Phys. Solids Vol. 38 (1990), pp.813-841.

Google Scholar

[3] M. Ostoja-Starzewski, in: Mechanics of Random and Multiscale Microstructures, CISM Courses and Lectures Vol. 430, Springer-Wien-NewYork (2001), pp.93-161.

DOI: 10.1007/978-3-7091-2780-3_3

Google Scholar

[4] R.M. Christensen: Mechanics of Composite Materials, J. Wiley & Sons (1979).

Google Scholar

[5] X. Du and M. Ostoja-Starzewski: submitted for publication (2005).

Google Scholar

[6] R. Hill: The Mathematical Theory of Plasticity, Clarendon Press, Oxford (1950).

Google Scholar

[7] M. Jiang, M. Ostoja-Starzewski and I. Jasiuk: J. Mech. Phys. Solids Vol. 49 (2001), pp.655-673.

Google Scholar

[8] M. Ostoja-Starzewski: Probab. Eng. Mech. Vol. 20 (2005), in press.

Google Scholar

[9] S.J. Lee and R.T. Shield: ZAMP vol. 31 (1980), pp.437-453.

Google Scholar

[10] Z.F. Khisaeva and M. Ostoja-Starzewski: Proc. Roy. Soc. Lond. A (2006), in press.

Google Scholar

[11] X. Du and M. Ostoja-Starzewski: submitted for publication (2005).

Google Scholar

[12] W. Li and M. Ostoja-Starzewski: submitted for publication (2005).

Google Scholar