Relaxation Kinetics of Bulk Metallic Glasses below Glass Transition Temperature

Article Preview

Abstract:

The free volume relaxation just under the glass transition region was investigated by the high-resolution density measurement using the bulk metallic glasses with the compositions of Pd40Ni40P20 and Zr55Cu30Ni5Al10. The relaxation process was well described by a stretched exponential function with Kohlrausch exponent values less than unity. The reduced free volumes in an as-quenched state were estimated as 0.0117 and 0.0353 for Pd40Ni40P20 glass and Zr55Cu30Ni5Al10 glass, respectively. The specific heat curves Cp(T) for Pd42.5Cu30Ni7.5P20 alloy were obtained for the supercooled liquid, the equilibrium liquid and the crystallized alloy. The isenthalpic Kauzmann temperature TKH and isentropic Kauzmann temperature TKS were estimated as 471 K and 522 K, respectively, from the specific heat data.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

2059-2064

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.I. Taub and F. Spaepen: Acta Metall. Vol. 28 (1980), p.1781.

Google Scholar

[2] S.S. Tsao and F. Spaepen: Acta Metall. Vol. 33 (1985), p.891.

Google Scholar

[3] C.A. Volkert and F. Spaepen: Acta Metall. Vol. 37 (1989), p.1355.

Google Scholar

[4] R. Busch, Y.J. Kim and W.L. Johson: J. Appl. Phys. Vol. 77 (1995), p.4039.

Google Scholar

[5] R. Busch, W. Liu and W.L. Johnson: J. Appl. Phys. Vol. 83 (1998), p.4134.

Google Scholar

[6] R. Busch and W.L. Johnson: Appl. Phys. Lett. Vol. 72 (1998), p.2695.

Google Scholar

[7] G.J. Fan, J.F. Löffler, R.K. Wunderlich and H. -J. Fecht: Acta Mater. Vol-52 (2004), p.667.

Google Scholar

[8] O. Haruyama, H. Sakagami, N. Nishiyama and A. Inoue: The 12th Int. Conf. on Rapidly Quenched Metals, Aug. 21-26, 2005, Korea, received.

Google Scholar

[9] O. Haruyama and A. Inoue: submitted to Appl. Phys. Lett.

Google Scholar

[10] I. -R. Lu, G.P. Görler, H. -J. Fecht, and R. Willnecker: J. Non-Cryst. Solids Vol-312 (2002), p.547.

Google Scholar

[11] I. -R. Lu, G. Wilde, G.P. Görler and R. Willnecker: J. Non-Cryst. Solids Vol-250-252 (1999), p.577.

DOI: 10.1016/s0022-3093(99)00135-0

Google Scholar

[12] G. Wilde, G.P. Görler and R. Willnecker: Appl. Phys. Lett. Vol-25 (1994), p.397.

Google Scholar

[13] N. Nishiyama , M. Horino, O. Haruyama and A. Inoue: Mater. Sci. and Eng., Vol-A304-306 (2001).

Google Scholar

[14] J.Z. Jiang, K. Saksl, N. Nishiyama and A. Inoue: J. Appl. Phys. Vol-92 (1991), p.3651.

Google Scholar

[15] M.H. Cohen and D. Turnbull: J. Chem. Phys. Vol-31 (1959), p.1164.

Google Scholar

[16] F. Spaepen, in: Les Houches, Sessions XXXV, 1980-Physique des Dëfauts/Physics of Defect, edited by R. Balian et al., North-Holland Publishing Company, 1981, p.134.

Google Scholar

[17] C. Kittel: Introduction to Solid State Physics (John Wiley & Sons 1996), p.79.

Google Scholar

[18] A. van den Beukel and J. Sietsma: Acta Metall. Vol-38 (1990), p.383.

Google Scholar