Relaxation Kinetics of Bulk Metallic Glasses below Glass Transition Temperature

Abstract:

Article Preview

The free volume relaxation just under the glass transition region was investigated by the high-resolution density measurement using the bulk metallic glasses with the compositions of Pd40Ni40P20 and Zr55Cu30Ni5Al10. The relaxation process was well described by a stretched exponential function with Kohlrausch exponent values less than unity. The reduced free volumes in an as-quenched state were estimated as 0.0117 and 0.0353 for Pd40Ni40P20 glass and Zr55Cu30Ni5Al10 glass, respectively. The specific heat curves Cp(T) for Pd42.5Cu30Ni7.5P20 alloy were obtained for the supercooled liquid, the equilibrium liquid and the crystallized alloy. The isenthalpic Kauzmann temperature TKH and isentropic Kauzmann temperature TKS were estimated as 471 K and 522 K, respectively, from the specific heat data.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

2059-2064

Citation:

O. Haruyama et al., "Relaxation Kinetics of Bulk Metallic Glasses below Glass Transition Temperature", Materials Science Forum, Vols. 539-543, pp. 2059-2064, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] A.I. Taub and F. Spaepen: Acta Metall. Vol. 28 (1980), p.1781.

[2] S.S. Tsao and F. Spaepen: Acta Metall. Vol. 33 (1985), p.891.

[3] C.A. Volkert and F. Spaepen: Acta Metall. Vol. 37 (1989), p.1355.

[4] R. Busch, Y.J. Kim and W.L. Johson: J. Appl. Phys. Vol. 77 (1995), p.4039.

[5] R. Busch, W. Liu and W.L. Johnson: J. Appl. Phys. Vol. 83 (1998), p.4134.

[6] R. Busch and W.L. Johnson: Appl. Phys. Lett. Vol. 72 (1998), p.2695.

[7] G.J. Fan, J.F. Löffler, R.K. Wunderlich and H. -J. Fecht: Acta Mater. Vol-52 (2004), p.667.

[8] O. Haruyama, H. Sakagami, N. Nishiyama and A. Inoue: The 12th Int. Conf. on Rapidly Quenched Metals, Aug. 21-26, 2005, Korea, received.

[9] O. Haruyama and A. Inoue: submitted to Appl. Phys. Lett.

[10] I. -R. Lu, G.P. Görler, H. -J. Fecht, and R. Willnecker: J. Non-Cryst. Solids Vol-312 (2002), p.547.

[11] I. -R. Lu, G. Wilde, G.P. Görler and R. Willnecker: J. Non-Cryst. Solids Vol-250-252 (1999), p.577.

[12] G. Wilde, G.P. Görler and R. Willnecker: Appl. Phys. Lett. Vol-25 (1994), p.397.

[13] N. Nishiyama , M. Horino, O. Haruyama and A. Inoue: Mater. Sci. and Eng., Vol-A304-306 (2001).

[14] J.Z. Jiang, K. Saksl, N. Nishiyama and A. Inoue: J. Appl. Phys. Vol-92 (1991), p.3651.

[15] M.H. Cohen and D. Turnbull: J. Chem. Phys. Vol-31 (1959), p.1164.

[16] F. Spaepen, in: Les Houches, Sessions XXXV, 1980-Physique des Dëfauts/Physics of Defect, edited by R. Balian et al., North-Holland Publishing Company, 1981, p.134.

[17] C. Kittel: Introduction to Solid State Physics (John Wiley & Sons 1996), p.79.

[18] A. van den Beukel and J. Sietsma: Acta Metall. Vol-38 (1990), p.383.