Study on Corrosion Fatigue Behavior of a High Strength Steel with Carbide Free Bainite/Martensite Duplex-Phase Structure

Abstract:

Article Preview

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

4509-4514

Citation:

B. Z. Bai et al., "Study on Corrosion Fatigue Behavior of a High Strength Steel with Carbide Free Bainite/Martensite Duplex-Phase Structure", Materials Science Forum, Vols. 539-543, pp. 4509-4514, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] Lou, Bingzhe Averbach, B. L. Fracture Toughness and Fatigue Behavior of Matrix II and M-2 High Speed Steels. Metallurgical Transactions A, 14(9): PP. 1889-1898, (1983).

DOI: https://doi.org/10.1007/bf02645560

[2] Ritchie R O, Castrocedeno M H, Zackay V F, et al. Effect of Silicon Addition and Retained Austenite on Stress-Corrosion Cracking in Ultrahigh Strength Steel. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 9 (1): PP. 35-40, (1978).

DOI: https://doi.org/10.1007/bf02647168

[3] Tomita Y. Effect of Microstructure on Plane-Strain Fracture Toughness of AISI 4340 steel. Metal. Trans., 19A: PP. 2513-2521, (1988).

DOI: https://doi.org/10.1007/bf02645479

[4] Fang HS, Zheng YK, Chen XY et al. Novel Air-Cooled Bainitc Steel. Journal of Metals, 40 (3): PP. 51, (1988).

[5] WG Hung, HS Fang, YK Zheng. Effect of Silicon Content on the Microstructure and Properties in Mn-B Air Cooled Bainite Steel. Transactions of Metal Heat Treatment, 9(2): PP. 8-13, (1997).

[6] Fang HS, Liu DY, Xu PG et al. The Ways to Improve Strength and Toughness of the Bainite Steel. Materials for Mechanical and Engineering, 25(6): PP. 1-5, (2001).

[7] Miihkinen V T T, Edmonds D V. Fracture Toughness of Two Experimental High-Strength Bainite Low-Alloy Steel Containing Silicon. Materials Science and Technology, 6(3), PP. 441-449, (1987).

DOI: https://doi.org/10.1179/mst.1987.3.6.441

[8] Ritchie R O, Castrocedeno M H, Zackay V F, Parker E R. Effect of Silicon Addition and Retained Austenite on Stress-Corrosion Cracking in Ultrahigh Strength Steel. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 9 (1): PP. 35-40, (1978).

DOI: https://doi.org/10.1007/bf02647168

[9] Ritchie R O, Castrocedeno M H, Zackay V F et al. Effect of Silicon Addition and Retained Austenite on Stress-Corrosion Cracking in Ultrahigh Strength Steel. Metal. Trans., 9A(1)�PP. 35-40, (1978).

[10] Fleck N A. Fatigue Crack Growth-the Complications. Fatigue Crack Growth 30 Years of Progress, Proceedings of Conference on Fatigue Crack Growth Cambridge, UK, Pergamon Press: PP. 76-78, (1984).

DOI: https://doi.org/10.1007/978-94-009-1509-1_7

[11] Halliday M D, Beevers C J. Non-closure of Cracks and Fatigue Crack Growth in Heat Treated Ti-6Al-4V. International Journal of Fracture, 15�PP. 27-30, (1979).

DOI: https://doi.org/10.1007/bf00115919

[12] Paris P C, Bucci R J, Wessel E T, Clarke W G, Mager T R. Extensive Study of Low Fatigue Crack Growth in A533 and A508 Steel. Stress Analysis and Growth of Cracks, ASTM STP513: PP. 141-176, (1972).

DOI: https://doi.org/10.1520/stp34119s

[13] Stewart A T. The Influence of Environment and Stress Ratio on Fatigue Crack Growth at Near Threshold Stress Intensities in Low-Alloy Steel. Engineering Fracture Mechanics, 13(3)�PP. 463-478, (1980).

DOI: https://doi.org/10.1016/0013-7944(80)90078-8

[14] Suresh S, Ritchie R O. A Geometric Model for Fatigue Crack Closure Induced by Fracture Surface Roughness. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 13A: PP. 1627-1631, (1982).

DOI: https://doi.org/10.1007/bf02644803