[1]
Lou, Bingzhe Averbach, B. L. Fracture Toughness and Fatigue Behavior of Matrix II and M-2 High Speed Steels. Metallurgical Transactions A, 14(9): PP. 1889-1898, (1983)
DOI: 10.1007/bf02645560
Google Scholar
[2]
Ritchie R O, Castrocedeno M H, Zackay V F, et al. Effect of Silicon Addition and Retained Austenite on Stress-Corrosion Cracking in Ultrahigh Strength Steel. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 9 (1): PP. 35-40, (1978)
DOI: 10.1007/bf02647168
Google Scholar
[3]
Tomita Y. Effect of Microstructure on Plane-Strain Fracture Toughness of AISI 4340 steel. Metal. Trans., 19A: PP. 2513-2521, (1988)
DOI: 10.1007/bf02645479
Google Scholar
[4]
Fang HS, Zheng YK, Chen XY et al. Novel Air-Cooled Bainitc Steel. Journal of Metals, 40 (3): PP. 51, (1988)
Google Scholar
[5]
WG Hung, HS Fang, YK Zheng. Effect of Silicon Content on the Microstructure and Properties in Mn-B Air Cooled Bainite Steel. Transactions of Metal Heat Treatment, 9(2): PP. 8-13, (1997)
Google Scholar
[6]
Fang HS, Liu DY, Xu PG et al. The Ways to Improve Strength and Toughness of the Bainite Steel. Materials for Mechanical and Engineering, 25(6): PP. 1-5, (2001)
Google Scholar
[7]
Miihkinen V T T, Edmonds D V. Fracture Toughness of Two Experimental High-Strength Bainite Low-Alloy Steel Containing Silicon. Materials Science and Technology, 6(3), PP. 441-449, (1987)
DOI: 10.1179/mst.1987.3.6.441
Google Scholar
[8]
Ritchie R O, Castrocedeno M H, Zackay V F, Parker E R. Effect of Silicon Addition and Retained Austenite on Stress-Corrosion Cracking in Ultrahigh Strength Steel. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 9 (1): PP. 35-40, (1978)
DOI: 10.1007/bf02647168
Google Scholar
[9]
Ritchie R O, Castrocedeno M H, Zackay V F et al. Effect of Silicon Addition and Retained Austenite on Stress-Corrosion Cracking in Ultrahigh Strength Steel. Metal. Trans., 9A(1)�PP. 35-40, (1978)
DOI: 10.1007/bf02647168
Google Scholar
[10]
Fleck N A. Fatigue Crack Growth-the Complications. Fatigue Crack Growth 30 Years of Progress, Proceedings of Conference on Fatigue Crack Growth Cambridge, UK, Pergamon Press: PP. 76-78, (1984)
DOI: 10.1016/0142-1123(87)90042-9
Google Scholar
[11]
Halliday M D, Beevers C J. Non-closure of Cracks and Fatigue Crack Growth in Heat Treated Ti-6Al-4V. International Journal of Fracture, 15�PP. 27-30, (1979)
DOI: 10.1007/bf00115919
Google Scholar
[12]
Paris P C, Bucci R J, Wessel E T, Clarke W G, Mager T R. Extensive Study of Low Fatigue Crack Growth in A533 and A508 Steel. Stress Analysis and Growth of Cracks, ASTM STP513: PP. 141-176, (1972)
DOI: 10.1520/stp34119s
Google Scholar
[13]
Stewart A T. The Influence of Environment and Stress Ratio on Fatigue Crack Growth at Near Threshold Stress Intensities in Low-Alloy Steel. Engineering Fracture Mechanics, 13(3)�PP. 463-478, (1980)
DOI: 10.1016/0013-7944(80)90078-8
Google Scholar
[14]
Suresh S, Ritchie R O. A Geometric Model for Fatigue Crack Closure Induced by Fracture Surface Roughness. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 13A: PP. 1627-1631, (1982)
DOI: 10.1007/bf02644803
Google Scholar