Diffusion Properties of Internal Interfaces in Bulk Nanocrystalline Materials: Radiotracer Investigation

Abstract:

Article Preview

The radiotracer technique was applied to measure self- (Fe, Ni) and solute- (Ag) grain boundary diffusion in nanocrystalline Fe-40wt.%Ni alloy. The nanocrystalline material was prepared by pressureless sintering of the nanoalloy powders. The nano-sized crystallites were found to be clustered in micrometer-large agglomerates. Two types of internal interfaces with fundamentally different properties exist in the nanomaterial: the grain boundaries between the nanocrystallites and the interfaces between the agglomerates. A complete and consistent model of the diffusion processes in such material is elaborated. Whereas the nanocrystalline boundaries reveal diffusivities, which are similar to those in coarse-grained material, diffusion along interagglomerate interfaces occurs faster by orders of magnitude. This behavior is explained by a nonrelaxed structure of the inter-agglomerate interfaces.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

5019-5024

Citation:

S. V. Divinski et al., "Diffusion Properties of Internal Interfaces in Bulk Nanocrystalline Materials: Radiotracer Investigation", Materials Science Forum, Vols. 539-543, pp. 5019-5024, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] I. Kaur, Y. Mishin and W. Gust: Fundamentals of grain and interphase boundary diffusion (Wiley, Chichester 1995).

[2] R. Birringer, H. Gleiter, H.P. Klein and P. Marquardt: Phys. Lett. A 102 (1984), p.365.

[3] H. Gleiter: Physica status solidi, В 172 (1992), p.41.

[4] H. Gleiter: Z. Metallknd. 86 (1995), p.78.

[5] R. Würschum, S. Herth and U. Brossmann: Adv. Engn. Mater. 5 (2003), p.365.

[6] J. Horváth, R. Birringer and H. Gleiter: Solid State Communs. 62 (1987), p.319.

[7] S. Schumacher, R. Birringer, R. Strauss and H. Gleiter: Acta met. 37 (1989), p.2485.

[8] H.J. Höfler, R.S. Averback, H. Hahn and H. Gleiter J. Appl. Phys. 74 (1993), p.3832.

[9] T. Surholt and Chr. Herzig: Acta mater. 45 (1997), p.3817.

[10] S. Divinski, M. Lohmann and Chr. Herzig: Acta mater. 49 (2001), p.249.

[11] S. Divinski, M. Lohmann and Chr. Herzig: Acta mater. 52 (2004), p.3973.

[12] S. Herth, T. Michel, H. Tanimoto, M. Eggersmann, R. Dittmar, H. -E. Schaefer, W. Frank and R. Würschum: Defects Diffusion Forum 194-199 (2001), p.1199.

DOI: https://doi.org/10.4028/www.scientific.net/ddf.194-199.1199

[13] H. Tanimoto, P. Farber, R. Würschum, R.Z. Valiev and H.E. Schaefer: Nanostructured Mater. 12 (1999), p.681.

[14] S. Gruss, A. Kubler, P. Scharwaechter, W. Frank, O. Kruse, H.D. Carstanjen and H.E. Schaefer: Phil. Mag. B 76 (1997), p.407.

[15] J.S. Lee, T.H. Kim, J.H. Yu and S.W. Chung: Nanostr. Mater. 9 (1997), p.153.

[16] S. Divinski, F. Hisker, Y.S. Kang, J.S. Lee and Chr. Herzig: Z. Metallkd. 93 (2002), p.256.

[17] S. Divinski, F. Hisker, Y.S. Kang, J.S. Lee and Chr. Herzig: Z. Metallkd. 93 (2002), p.265.

[18] S. Divinski, F. Hisker, Y.S. Kang, J.S. Lee and Chr. Herzig: Interface Science 11 (2003), p.67.

DOI: https://doi.org/10.1023/a:1021587007368

[19] S. Divinski, F. Hisker, Y.S. Kang, J.S. Lee and Chr. Herzig: Acta Mater. 52 (2004), p.631.

[20] L.G. Harrison: Trans. Faraday Soc. A 8 (1961), p.1191.

[21] S. Divinski, J.S. Lee and Chr. Herzig: J. Metastable and Nanocryst. Mater. 19 (2004), p.55.

[22] J. Sommer and Chr. Herzig: J. Appl. Phys. 72 (1992), p.2758.

[23] Y.S. Kang, J.S. Lee, S.V. Divinski, F. Hisker and Chr. Herzig: Z. Metallkd. 95 (2004) , p.76.

[24] J.S. Lee, B.H. Cha and Y.S. Kang: Adv. Engn. Mater. 7 (2005), p.467.

[25] R. Würschum, T. Michel, P. Scharwaechter, W. Frank and H.E. Schaefer: Nanostructured Mater. 12 (1999), p.555.

[26] M. Eggersmann, A. Ye, S. Herth, O. Gutfleisch and R. Würschum: Interface Sci. 9 (2001) , p.337.

[27] G. Salishchev, R. Zaripova, R. Galeev and O. Valiakhmetov: Nanostruct. Mater. 6 (1995), p.913.

[28] I.A. Ovid'ko: Int. Mater. Rev. 50 (2005), p.65.

[29] Yu.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, A.P. Zhilyaev and R.Z. Valiev: Scr. Mater. 44 (2001), p.873.

[30] G.P. Grabovetskaya, I.V. Ratotska, Yu.R. Kolobov and L.N. Puchkareva: Fizika Metallov Metallovedenie 83 (1997), p.112.

[31] R. Würschum, K. Reimann and P. Farber: Defect Diffusion Forum 143 (1997), p.1463.

Fetching data from Crossref.
This may take some time to load.