Effects of Spatial Distribution of Defects on Bending Deformation and Critical Current in Bi2223/Ag Superconducting Composite Tapes

Article Preview

Abstract:

The strain dependence of the critical current, Ic, of Bi2223/Ag/Ag-alloy composite superconducting tapes has been studied both experimentally and analytically under bending deformation for two types of tape used in the VAMAS bending round-robin program (classified as VAM1 and 3). Our former analysis showed that the experimentally obtained Ic values were between the calculated ones based on a damage-free initial state and a case where delamination occupied the full width of the tape mid-plane. The experimentally obtained Ic values were explained by the delamination occupying partial width of the tape mid-plane. However, the microscopic observation indicated that the delamination location in the thickness direction was not limited to the mid-plane. In the present study, the analysis was modified to incorporate the movement of the delamination location in the thickness direction. The calculated Ic values with delamination increased when the delamination location moved to compressive side of the tape, and decreased when that moved to tensile side of the tape. Finally, the experimental Ic values can be understood by the distribution of delamination in both width and thickness direction.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

919-924

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Osamura, ed.: Composite Superconductors (Marcel Dekker, New York 1994).

Google Scholar

[2] S. Ochiai, ed.: Mechanical Properties of Metal Matrix Composites (Marcel Dekker, New York 1993).

Google Scholar

[3] T. Kato, S. Kobayashi, K. Yamazaki, K. Ohkura, M. Ueyama, N. Ayai, J. Fujikami, E. Ueno, M. Kikuchi, K. Hayashi and K. Sato: Physica C Vols. 412-414 (2004), p.1066.

DOI: 10.1016/j.physc.2004.05.006

Google Scholar

[4] S. Kobayashi, K. Yamazaki, T. Kato, K. Ohkura, E. Ueno, K. Fujino, J. Fujikami, N. Ayai, M. Kikuchi, K. Hayashi, K. Sato and R. Hata: Physica C Vols. 426-431, Part2 (2005), p.1132.

DOI: 10.1016/j.physc.2005.02.097

Google Scholar

[5] K. Sato: Doctor thesis (Kyoto University 2006).

Google Scholar

[6] R. Passerini, M. Dhalle, B. Seeber and R. Flükiger: Supercond. Sci. Technol. Vol. 15 (2002), p.1507.

Google Scholar

[7] M. Sugano, K. Osamura and M. Hojo: Supercond. Sci. Technol. Vol. 16 (2003), p.571.

Google Scholar

[8] S. Ochiai, K. Hayashi and K. Osamura: Cryogenics Vol. 31 (1991), p.954.

Google Scholar

[9] J. Yau and N. Savvides: N 1994 Appl. Phys. Lett. Vol. 65 (1994), p.1454.

Google Scholar

[10] H.J.N. van Eck, L. Vargas, B. ten Haken and H.H.J. ten Kate: Supercnd. Sci. Technol. Vol. 15 (2002), p.1213.

Google Scholar

[11] K. Katagiri, H.S. Shin, K. Kasaba, T. Tsukinokizawa, K. Hiroi, T. Kuroda, K. Itoh and H. Wada: Supercond. Sci. Technol. Vol. 16 (2003), p.995.

DOI: 10.1088/0953-2048/16/9/306

Google Scholar

[12] H.S. Shin and K. Katagiri: Supercond. Sci. Technol. Vol. 16 (2003), p.1012.

Google Scholar

[13] M. Hojo, M. Nakamura, T. Matsuoka, M. Tanaka, S. Ochiai, M. Sugano and K. Osamura: Supercond. Sci. Technol. Vol. 16 (2003), p.1043.

Google Scholar

[14] U. Balachandram, A.N. Iyer, R. Jammy, P. Haldar, J.G. Hoehn, Jr and M. Suenaga: Adv. Cryogen. Eng. Vol. 42 (1996), p.753.

Google Scholar

[15] M. Hojo, M. Nakamura, M. Tanaka, T. Adachi, M. Sugano, S. Ochiai and K. Osamura: Supercond. Sci. Technol. Vol. 18 (2005), p. S356.

DOI: 10.1088/0953-2048/18/12/022

Google Scholar

[16] M. Sugano, K. Osamura and A. Nyilas: Supercond. Sci. Technol. Vol. 16 (2003), p.1064.

Google Scholar