Performance of Photocatalytic Microfiltration with Hollow Fiber Membrane

Abstract:

Article Preview

The purpose of this study is to investigate the effect of the operational parameters of the UV intensity and TiO2 dosage for the removal of humic acid and heavy metals. It also evaluated the applicability of hollow fiber microfiltration for the separation of TiO2 particles in photocatalytic microfiltration systems. TiO2 powder P-25 Degussa and hollow fiber microfiltration with a 0.4 μm nominal pore size were used for experiments. Under the conditions of pH 7 and a TiO2 dosage 0.3 g/L, the reaction rate constant (k) for humic acid and heavy metals increased with an increase of the UV intensity in each process. For the UV/TiO2/MF process, the reaction rate constant (k) for humic acid and Cu, with the exception of Cr in a low range of UV intensity, was higher compared to that of UV/TiO2 due to the adsorption of the membrane surface. The reaction rate constant (k) increased as the TiO2 dosage increased in the range of 0.1~0.3 g/L. However it decreased for a concentration over 0.3 g/L of TiO2. For the UV/TiO2/MF process, TiO2 particles could be effectively separated from treated water via membrane rejection. The average removal efficiency for humic acid and heavy metals during the operational time was over 90 %. Therefore, photocatalysis with a membrane is believed to be a viable process for humic acid and heavy metals removal.

Info:

Periodical:

Materials Science Forum (Volumes 544-545)

Edited by:

Hyungsun Kim, Junichi Hojo and Soo Wohn Lee

Pages:

95-98

DOI:

10.4028/www.scientific.net/MSF.544-545.95

Citation:

J. T. Jung et al., "Performance of Photocatalytic Microfiltration with Hollow Fiber Membrane", Materials Science Forum, Vols. 544-545, pp. 95-98, 2007

Online since:

May 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.