The Effect of Grain Size on Superplastic Deformation of Ti-6Al-4V Alloy

Article Preview

Abstract:

In this study, superplastic tensile tests were carried out for Ti-6Al-4V alloy using different initial grain sizes (2.6 μm, 6.5μm and 16.2 μm) at a temperature of 920°C with an initial strain rate of 1×10-3 s-1. To get an insight into the effect of grain size on the superplastic deformation mechanisms, the microstructures of deformed alloy were investigated by using an optical microscope and transmission electron microscope (TEM). The results indicate that there is dramatic difference in the superplastic deformation mode of fine and coarse grained Ti-6Al-4V alloy. Meanwhile, grain growth induced by superplastic deformation has also been clearly observed during deformation process, and the grain growth model including the static and strain induced part during superplastic deformation was utilized to analyze the data of Ti-6Al-4V alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 551-552)

Pages:

387-392

Citation:

Online since:

July 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. P. Chu, I. M. Liu, J. H. Wu, W. Kai, J. Y. Wang, K. Inoue: Mater. Sci. Eng., A258 (1998), p.236.

Google Scholar

[2] P. Griffiths, C. Hammond: Acta Metall., Vol. 20 (1972), p.935.

Google Scholar

[3] H. Ding, K. F. Zhang: The Chinese Journal of Nonferrous Metals, Vol. 14 (2004), p.1059.

Google Scholar

[4] J. S. Kim, J. H. Kim, Y. T. Lee, C. G. Park, C. S. Lee. K. Inoue: Mater. Sci. Eng., A263 (1999), p.272.

Google Scholar

[5] J. Z. Cui, Q. L. Wu, L. X. Ma: Journal of Northeast University of Technology, 54 (1988), p.6.

Google Scholar

[6] E. Sato, K. Kuribayashi: ISIJ International, Vol. 33 (1993), p.825.

Google Scholar

[7] F. J. Gil, J. A. Planell: Mater. Sci. Eng., A283 (2000), p.17.

Google Scholar

[8] O. N. Senkov, M. M. Myshlyyaev: Acta Metall., Vol. 34 (1986), p.97.

Google Scholar

[9] S. Richter, C. H. Hamilton: Mater. Sci. Forum 113-115, (1993), p.195.

Google Scholar

[10] C. H. Johnson, S.K. Richter, C. H. Hamilton, J. J. Hoyt: Acta Mater., Vol. 47 (1998), p.23.

Google Scholar

[11] R. C. Gifkins: J. Mater. Sci. Vol. 13 (1978), p. (1926).

Google Scholar

[12] H. S. Yang, G. Gurewitz, A. K. Mukherjee: Mater. Trans, JIM, Vol. 32 (1991), p.465.

Google Scholar

[13] M. L. Meier, D. R. Lesuer, A. K. Mukherjee: Mater. Sci. Eng., A136 (1991), p.71.

Google Scholar

[14] F. R. Cao, F. Lei, J. Z. Cui, J. L. Wen: Acta Metall. Sinica, Vol. 35 (1999), p.770.

Google Scholar

[15] M. V. Speight: Acta Metall., Vol. 16 (1968), p.133.

Google Scholar

[16] A. J. Ardell: Acta Metall., Vol. 20 (1972), p.601.

Google Scholar

[17] G. Grewal, S. Ankem: Metall. Trans. A, Vol. 21 (1990), p.1645.

Google Scholar

[18] H. Hu, B. B. Rath: Metall. Trans., Vol. 1 (1970), p.3181.

Google Scholar

[19] V. D. Campenni, C. H. Caceres: Scripta Metall., Vol. 22 (1987), p.359.

Google Scholar

[20] K. Rabinovich, V. G. Trifonov: Acta Metall., Vol. 44 (1996), p. (2073).

Google Scholar

[21] K. I. Lim: Acta Metall., Vol. 37 (1997), p.1053.

Google Scholar

[22] F. R. Cao, J. Z. Cui: Acta Metall. Sinica, Vol. 10 (1997), p.527.

Google Scholar