Superplastic Properties and Superplastic Forming/Diffusion Bonding of γ-TiAl+α2-Ti3Al Sheet Materials

Article Preview

Abstract:

The as-cast and hot worked microstructures of the newly developed β-solidifying ingot-metallurgy Ti-45Al-X (Nb,Mo,B) alloy and its superplastic properties in the hot worked condition have been studied. The obtained experimental findings were used for research of superplastic forming and diffusion bonding of sheet products, which were cut out of hot worked preform by spark cutting. It was shown that superplastic forming might be successfully applied to the obtained fine-grained sheet materials. Relatively low bonding temperatures and pressures were found to be sufficient to achieve sound joints in the sheet material.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 551-552)

Pages:

441-446

Citation:

Online since:

July 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y-W. Kim, D.M. Dimiduk, in: Structural Intermetallics 1997, edited by M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, The Minerals, Metals & Mater. Soc., Warrendale, PA (1997), p.531.

Google Scholar

[2] D.M. Dimiduk, P.L. Martin and Y-W. Kim: Mater. Sci. Eng., Vol. A243 (1998), p.66.

Google Scholar

[3] F. Appel and R. Wagner: Mater. Sci. Eng., Vol. R22 (1998), p.187.

Google Scholar

[4] P.L. Martin, D.A. Hardwick, D.R. Clemens, W.A. Konkel and M.A. Stucke, in: Structural Intermetallics 1997, edited by M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, The Minerals, Metals & Mater. Soc., Warrendale, PA (1997).

Google Scholar

[5] S.L. Semiatin, J.C. Chesnutt, C. Austin and V. Seetharaman, in: Structural Intermetallics 1997, edited by M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, The Minerals, Metals & Mater. Soc., Warrendale, PA (1997).

Google Scholar

[6] S. Naka, M. Thomas, C. Sanchez and T. Khan, in: Structural Intermetallics 1997, edited by M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi (Eds. ), The Minerals, Metals & Mater. Soc., Warrendale, PA (1997).

Google Scholar

[7] U. Brossmann, M. Oehring and F. Appel, in: Structural Intermetallics 2001, edited by K.J. Hemker, D.M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, J.D. Whittenberger (Eds. ), The Minerals, Metals & Mater. Soc., Warrendale, PA (2001).

Google Scholar

[8] R. Imayev, V. Imayev, M. Oehring and F. Appel: Intermetallics (2006), accepted to publication.

Google Scholar

[9] G.A. Salishchev, O.R. Valiakhmetov, R.M. Galeyev and F.H. Froes, in: Ti-2003 Science and Tehnology, edited by G. Luetjering and J. Albrecht WILEY-VCH Verlag GmbH & Co., KGaA (2003), p.569.

DOI: 10.1002/3527600434

Google Scholar

[10] B. Taberning and H. Kestle, in Gamma Titanium Aluminides, edited by Y-W. Kim, H. Clemens, A.H. Rosenberger, the Minerals Metals and Mater. Soc. (2003), p.619.

Google Scholar

[11] G. Cam, H. Clemens, R. Gerling and M. Kocak: Intermetallics, Vol. 7 (1999), p.1025.

Google Scholar