Fraction Scaling and Dynamical Properties of Elastomer Materials

Abstract:

Article Preview

Scaling of the real and the imaginary part of dynamic moduli with frequency, for fully cured elastomer materials as gum and active carbon black filled butyl rubbers, is considered experimentally and theoretically. For gum rubber in different ranges of frequency complete agreement with G''-scaling predicted by the Rouse theory is obtained. Obtained slopes for all G' and G'' of filled rubber are much lower.

Info:

Periodical:

Edited by:

Dragan P. Uskoković, Slobodan K. Milonjić and Dejan I. Raković

Pages:

467-472

Citation:

M.B. Plavšić and I. Pajić-Lijaković, "Fraction Scaling and Dynamical Properties of Elastomer Materials", Materials Science Forum, Vol. 555, pp. 467-472, 2007

Online since:

September 2007

Export:

Price:

$38.00

[1] M.B. Plavsic: Interaction of Fillers with Polymer Networks-Transition from Nano to Macro Scale, Ch. 6 in Finely Dispersed Particles: Micro and Nano-, and Atto- Engineering, Eds. A. Spasic and J. Hsu (CRC, Taylor and Francis, New York 2006), p.131.

DOI: https://doi.org/10.1201/9781420027662.ch6

[2] M. Dugic, D. Rakovic and M.B. Plavsic: The Polymer Conformational Stability and Transitions: A Quantum Decoherence Theory Approach, Ch. 9 in Finely Dispersed Particles: Micro and Nano-, and Atto- Engineering, Eds. A. Spasic and J. Hsu (CRC, Taylor and Francis, New York 2006), p.217.

DOI: https://doi.org/10.1201/9781420027662.ch9

[3] P.J. Flory: Principles of Polymer Chemistry (Cornell Univ., New York 1953).

[4] M.B. Plavsic, I. Pajic-Lijakovic and P. Putanov: Chain Conformational Statistics and Mechanical Properties of Elastomer Blends, Ch. 19 in New Polymeric Materials, Eds. L. Korugic-Karasz, W. Mac Knight and E. Martucelly (ACS, Oxford Univ. Press, Oxford 2005), p.252.

DOI: https://doi.org/10.1021/bk-2005-0916.ch019

[5] P.G. deGennes: Scaling Concept in Polymer Physics (Cornell Univ., New York 1979).

[6] B.B. Mandelbrot: The Fractal Geometry of Nature (Freemen, California 1982).

[7] D. Avnir, Ed.: The Fractal Approach to Heterogeneous Chemistry (Wiley, New York 1989).

[8] D. Stauffer, A. Coniglio and M. Adam: Adv. Polym. Sci. Vol. 44 (1982), p.103.

[9] S. Alexander and R. Orbach: J. Phys. (Paris) Lett. Vol. 43 (1982), p.625.

[10] F. Chambron, H.H. Winter: Polym. Bull. Vol. 13 (1985), p.499.

[11] R. Muller, E. Gerard, P. Dagand and P. Rampp: Macromolecules Vol. 24 (1991), p.1321.

[12] D. Adolf, J.M. Martin and J.P. Wilcoxon: Macromolecules Vol. 23 (1990), p.527.

[13] D. Adolf and J.M. Martin: Macromolecules Vol. 23 (1990), p.3700.

[14] D. Adolf and J.M. Martin: Macromolecules Vol. 24 (1991), p.6721.

[15] H. Tanaka, A. Sakanishi, M. Kaneko, J. Furuichi: J. Polym. Sci. Part C Vol. 15 (1966), p.317.

[16] Sakanishi: J. Chem. Phys. Vol. 48 (1968), p.3850.

[17] M.B. Plavsic: Polymer Materials Science and Engineering (Naucna Knjiga, Serbia 1996).

[18] C.M. Blow, Ed.: Rubber Technology and Manufacture (Butterwords, UK 1982).

[19] M. Ilavsky, H. Valentova, Z. Sedlakova, J. Nedbal and V. Velychko: Mater. Sci. Forum Vol. 518 (2006), p.367.

[20] W.L. Vandoolaeghe and E.M. Terentjev: J. Chem. Phys. Vol. 123 (2005), p.9606.

[21] M.V. Volkenstein: Biophysics (Mir, Russia1983).

[22] M.B. Plavsic et al.: to be published.

Fetching data from Crossref.
This may take some time to load.