A Texture Component Model for Predicting Recrystallization Textures

Abstract:

Article Preview

The study presents an analytical model for predicting crystallographic textures and the final grain size during primary static recrystallization of metals using texture components. The kinetics is formulated as a tensorial variant of the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. The tensor form is required since the kinetic and crystallographic evolution of the microstructure is described in terms of a limited set of growing (recrystallizing) and swept (deformed) texture components. The number of components required defines the order of the tensor since the kinetic coupling occurs between all recrystallizing and all deformed components. The new method is particularly developed for the fast and physically-based process simulation of recrystallization textures with respect to processing. The present paper introduces the method and applies it to the primary recrystallization of low carbon steels.

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

1035-1042

Citation:

M. Winning et al., "A Texture Component Model for Predicting Recrystallization Textures", Materials Science Forum, Vols. 558-559, pp. 1035-1042, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] F.J. Humphreys: Materials Sc. and Tech. 8 (1992), p.135.

[2] A.D. Rollett: Progress in Mater. Sc. 42 (1997), p.79.

[3] D. Raabe: Computational Materials Science (Wiley-VCH, Weinheim, 1998).

[4] O. Engler and H.E. Vatne: JOM 50 (1998), p.23.

[5] D. Raabe: Adv. Eng. Mater. 3 (2001), p.745.

[6] E.A. Holm and C.C. Battaile: JOM 9 (2000), p.20.

[7] D. Raabe, F. Roters, F. Barlat and L.Q. Chen (Eds. ): Continuum Scale Simulation of Engineering Materials (Wiley-VCH, Weinheim, 2004).

[8] H.J. Bunge and U. Köhler: Scripta Metall. 27 (1992), p.1539.

[9] R. Sebald and G. Gottstein: Acta Mater. 50 (2002), p.1587.

[10] R. Sebald and G. Gottstein: in Proc. ICOTOM 12, 1 (1999), p.292.

[11] M. Hölscher, D. Raabe and K. Lücke: Steel Research 62 (1991), p.567.

[12] W.B. Hutchinson: Int. Mat. Rev. 29 (1984), p.25.

[13] D. Raabe and K. Lücke: Materials Sci. & Tech. 9 (1993), p.302.

[14] C. Klinkenberg, D. Raabe and K. Lücke: Steel Research 63 (1992), p.227.

[15] D. Raabe: Steel Research 66 (1995), p.222.

[16] P. Juntunen, D. Raabe, P. Karjalainen, T. Kopio and G. Bolle: Metall. Mater. Trans. A 32 (2001), p. (1989).

[17] D. Raabe: Scripta Metall. 33 (1995), p.735.

[18] D. Raabe and F. Roters: Intern. J. Plasticity 20 (2004), p.339.

[19] K. Lücke, J. Pospiech, J. Jura and J. Hirsch: Z. Metallkunde 77 (1986), p.312.

[20] K. Helming, R.A. Schwarzer, B. Rauschenbach, S. Geier, B. Leiss, H. Wenk, K. Ullemeier and J. Heinitz: Z. Metallkunde 85 (1994), p.545.

[21] C. Därmann, S. Mishra and K. Lücke: Acta Metall. 32 (1984), p.2185.

[22] U. von Schlippenbach, F. Emren and K. Lücke: Acta Metall. 34 (1986), p.1289.

[23] D. Raabe, Z. Zhao, S.J. Park and F. Roters: Acta Mater. 50 (2002), p.421.

[24] G. Gottstein and L.S. Shvindlerman: Grain Boundary Migration in Metals - Thermodynamics, Kinetics, Applications (CRC Press, Boca Raton, 1999).

[25] G. Gottstein, V. Marx and R. Sebald: in Recrystallization and Related Phenomena, T. Sakai, H.G. Suzuki (Eds. ), The Japan Inst. of Metals, 1999, p.15.

[26] L.S. Shvindlerman and G. Gottstein: in Recrystallization and Related Phenomena, T. Sakai, H.G. Suzuki (Eds. ), The Japan Inst. of Metals, 1999, p.431.

[27] M. Furtkamp, G. Gottstein, D.A. Molodov, V.N. Semenov and L.S. Shvindlerman: Acta Mater. 46 (1998), p.4103.

DOI: https://doi.org/10.1016/s1359-6454(98)00105-0

[28] H.J. Bunge: Texture analysis in materials science (Butterworths, London, 1982).