Computer Simulations of Kinetics and Texture of Recrystallisation by a 3-D Potts Monte Carlo Model

Article Preview

Abstract:

In the present work computer simulations using a 3-D Potts Monte Carlo model are demonstrated and discussed as a tool to study the effects of a number of parameters related to the deformation conditions as well as process and material parameters related to the nucleation and growth conditions of recrystallisation, such as e.g. second phase particles, which may influence the kinetics and texture of recrystallisation. The MC simulations have been combined with a deformation texture model to provide the deformation structure from which the recrystallisation nucleates and models which provide the relative proportions of certain nucleation mechanisms and their orientation spectrum. All together this gives a simulation tool which allows for a multitude of numerical experiments and the possibility to study parameter relationships which are often not easily available from experiments. The potential of such a simulation tool is discussed in terms of a few generic examples.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Pages:

1069-1074

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.E. Vatne, T. Furu, R. Ørsund, and E. Nes: Acta Met. 44 (1996), p.4463.

DOI: 10.1016/1359-6454(96)00078-x

Google Scholar

[2] H.E. Vatne, K. Marthinsen, R. Ørsund, and E. Nes: Metallurgical and Materials Transactions A, 27A (1996), p.4133.

Google Scholar

[3] J.A. Sæter, B. Forbord, H.E. Vatne and E. Nes: Proc. ICAA6 (ed. Sato et al. ) (1998), p.113.

Google Scholar

[4] E. Nes: Prog. Materials Sci., 41 (1998), p.129.

Google Scholar

[5] E. Nes and K. Marthinsen: Mater. Sci. Eng. A322 (2002), p.176.

Google Scholar

[6] O.R. Myhr, and Ø. Grong: Acta mater 48 (2002), p.1605.

Google Scholar

[7] B. Holmedal, K. Marthinsen, and E. Nes: Z. Metallkunde 96 (2005), p.532.

Google Scholar

[8] A.D. Rollett. Prog. Materials Science Vol. 42 (1997), p.79.

Google Scholar

[9] A.D. Rollett and P. Manohar: in Continuum Scale Simulation of Engineering Materials, edited by D. Raabe et al, Wiley-VCH, Weinheim, Germany 2004, p.77.

Google Scholar

[10] H.W. Hesselbarth and I.R. Gøbel: Acta Met. Mat. 39 (1991), p.2135.

Google Scholar

[11] V. Marx, F.R. Reher, G. Gottstein. Acta Mater. Vol. 47 (1999), p.1219.

Google Scholar

[12] D. Raabe: in Continuum Scale Simulation of Engineering Materials, edited by D. Raabe et al, Wiley-VCH, Weinheim, Germany 2004) p.57.

Google Scholar

[13] A.P. Brahme, PhD thesis, Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA (http: /gradworks. umi. com/31/86/3186022. html).

DOI: 10.21926/obm.transplant.1903083

Google Scholar

[14] A. Brahme, M.H. Alvi, D. Saylor, J. Fridy and A.D. Rollett: Scripta mater. Vol 55 (2006), p.75.

DOI: 10.1016/j.scriptamat.2006.02.017

Google Scholar

[15] C. N. Tome and R.A. Lebensohn: in Continuum Scale Simulation of Engineering Materials, edited by D. Raabe et al, Wiley-VCH, Weinheim, Germany (2004) p.473.

Google Scholar

[16] O. Engler: Textures and Microstructures, Vol. 32, (1999) p.197.

Google Scholar

[17] R.B. Potts: Proc. Cambridge Philosophical Soc. Vol. 48 (1952), p.106.

Google Scholar

[18] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller: Journal of Chemical Physics Vol 21 (1953), p.1087.

DOI: 10.1063/1.1699114

Google Scholar

[19] G.N. Hassold, E.A. Holm: Computers in Physics Vol. 7 (1993), p.97.

Google Scholar

[20] F.J. Humphreys and M. Hatherly: Recrystallisation and Related Annealing Phenomena. Elsevier Amsterdam (2004).

Google Scholar

[21] H. Mykura: Grain Boundary Structure and kinetics ed. Balluffi, ASM, Ohio (1980), p.445.

Google Scholar

[22] M. Crumbach, G. Pomana, P. Wagner, and G. Gottstein: in Proc. 1 st Joint Int. Conf. on Recrystallisation and Grain Growth, eds. G. Gottstein, D.A. Molodov (Springer, Berlin 2001), p.1053.

Google Scholar

[23] M. Miodownik, A.W. Godfrey, E.A. Holm, and D.A. Hughes: Acta mater. 47 (1999), p.2661.

Google Scholar

[24] O. Engler: Materials Science Forum, Vols. 519-521 (2006) p.1563.

Google Scholar

[25] M. Miodownik, E. A. Holm and G.N. Hassold: Scripta mater. 42 (2000), p.1173.

Google Scholar

[26] S. A. Wright, S. J. Plimpton, T. P. Swiler, R. M. Fye, M. F. Young, E. A. Holm, SANDIA Report 97-1925, August 1997. http: /www. cs. sandia. gov/~sjplimp/papers. html.

Google Scholar