The Role of Deformation Twinning on Creep of Titanium Alloys

Article Preview

Abstract:

Normally, deformation twinning is a process that occurs at rates approaching the speed of sound in bulk metals once a critical stress has been reached. However, recently it has been shown that twins grow at speeds many orders of magnitude lower than the speed of sound during room temperature creep of titanium alloys. The net result is that this twinning process can contribute to the low-temperature (less than 0.25*Tm) creep behavior of α, α−β, and β−titanium alloys. For example, α-Ti alloys with small grain size do not extensively deform by twinning and hence show little overall creep strain. These recent developments are reviewed in this paper. This work is funded by the National Science Foundation under Grant Number DMR-0517351.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Pages:

121-126

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Adenstedt: Met. Progr. Vol. 56 (1949), pp.658-60.

Google Scholar

[2] R.R. Zeyfang, R. Martin and H. Conrad: Mater. Sci. Eng. Vol. 4(1971), pp.134-140.

Google Scholar

[3] B.C. Odegard and A.W. Thompson: Metall. Trans. Vol. 5 (1974), pp.1207-1213.

Google Scholar

[4] M.A. Imam and C.M. Gilmore: Metall. Trans. A Vol. 10A (1979), pp.419-425.

Google Scholar

[5] W.H. Miller, R.T. Chen and E.A. Starke: Metall. Trans. A Vol. 18A (1987), pp.1451-1468.

Google Scholar

[6] T. Neeraj, D.H. Hou, G.S. Daehn and M.J. Mills: Acta Mater. Vol. 48 (2000), pp.1225-1238.

Google Scholar

[7] S. Ankem, C.A. Greene and S. Singh: Scripta Metall. Mater. Vol. 15 (1994), pp.803-808.

Google Scholar

[8] A.K. Aiyangar, B.W. Neuberger, P.G. Oberson and S. Ankem: Metall. Mater. Trans. A Vol. 36A (2005), pp.637-644.

Google Scholar

[9] G.E. Dieter: Mechanical Metallurgy (McGraw-Hill, New York 1986).

Google Scholar

[10] M.A. Meyers, O. Vöhringer and V.A. Lubarda: Acta Mater. Vol. 49 (2001), pp.4025-4039.

Google Scholar

[11] G.T. Gray III: J. Phys. IV Vol. 7 (1997), pp.423-428.

Google Scholar

[12] P.G. Oberson: PhD Dissertation: Experimental and Theoretical Investigation of Low Temperature Creep Deformation Behavior of Single-Phase Titanium Alloys (University of Maryland, College Park 2006).

Google Scholar

[13] Z. Liu and G. Welsch: Metall. Trans. A Vol. 19A(1988), pp.1121-1125.

Google Scholar

[14] A. Ramesh and S. Ankem: Metall. Mater. Trans. A Vol. 33A (2002), pp.1137-1144.

Google Scholar

[15] M.J. Blackburn and J.C. Williams: Trans. Metall. Soc. AIME Vol. 23 (1968), pp.2461-2469.

Google Scholar

[16] D. Doraiswamy and S. Ankem: Acta Mater. Vol. 51 (2003), pp.1607-1619.

Google Scholar

[17] J.W. Christian and S. Mahajan: Prog. Mater Sci. Vol. 94 (1995), pp.1-157.

Google Scholar

[18] C.L. Magee, D.W. Hoffman and R.G. Davies: Phil. Mag. Vol. 23 (1971), pp.1531-1540.

Google Scholar

[19] P.G. Oberson and S. Ankem: Phys. Rev. Lett. Vol. 95 (2005), pp.165501-4.

Google Scholar

[20] C.M. Hudson: PhD Dissertation: Investigation of Low Temperature Creep Deformation Behavior of a Metastable Beta Titanium-14. 8Wt%Vanadium Alloy (University of Maryland, College Park 2004).

Google Scholar

[21] C.A. Greene: PhD Dissertation: Fundamental Studies on Ambient Temperature Creep Deformation Behavior of Alpha and Alpha-Beta Titanium Alloys (University of Maryland, College Park 1994).

Google Scholar

[22] A. Jaworski Jr. and S. Ankem: Metall. Mater. Trans. A Vol. 37A (2006), pp.2755-65.

Google Scholar

[23] S. Ankem and H. Margolin: Metall. Trans. A Vol. 17A (1986), pp.2209-26.

Google Scholar