Ultra-Large Area RF Plasma Sources Employing Multiple Low-Inductance Internal-Antenna Modules for Flat Panel Display Processing

Article Preview

Abstract:

Plasma-generation and control technologies for meters-scale ultra-large-area RF plasma sources have been developed with multiple low-inductance antenna (LIA) modules, as a promising candidate of ultra-large area and high-density (1011-1012 cm-3) plasma sources for next-generation large-area processing. The present technologies are based on principle of multiple operation and integrated control of LIA modules, which enables effective control of power deposition profiles and hence the plasma uniformity over meters-scale large area for processing. This paper presents issues in designing ultra-large-area plasma sources to demonstrate feasibility of the uniform sources with 3m x 3m scales to meet requirements in the next-generation processes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Pages:

1237-1240

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).

Google Scholar

[2] V. Vahedi V, C. K. Birdsall, M .A. Lieberman, G. DiPeso and T. D. Rognlien, Phys. Fluids Vol. B 5 (1993) P. 2719.

Google Scholar

[3] L. Sansonnens, A. Pletzer, D. Magni, A. A. Howling,C. Hollenstein and J. P. M. Schmitt, Plasma Sources Sci. Technol. Vol. 6 (1997) P. 170.

DOI: 10.1088/0963-0252/6/2/010

Google Scholar

[4] J. Hopwood, Plasma Sources Sci. Tehcnol. Vol. 1 (1992) P. 109.

Google Scholar

[5] J. Hopwood, Plasma Sources Sci. Technol. Vol. 3 (1994) P. 460.

Google Scholar

[6] Y. Setsuhara, S. Miyake, Y. Sakawa and T. Shoji, Surf. Coat. Technol. Vol. 136 (2001) P. 60.

Google Scholar

[7] M. Moisan, A. Shivarova and A.W. Trivelpiece, Plasma Phys. Vol. 24 (1982) P. 1331.

Google Scholar

[8] M. Nagatsu, G. Xu, M. Yamage, M. Kanoh and H. Sugai, Japan. J. Appl. Phys. Vol. 35 (1996) P. L341.

Google Scholar

[9] I. Ganachev and H. Sugai, Surf. Coatings Technol. Vol. 174-175 (2003) P. 15.

Google Scholar

[10] J. Perrin, J. Schmitt, C. Hollenstein, A. Howling and L. Sansonnens, Plasma Phys. Control. Fusion Vol. 42 (2000) P. B353.

DOI: 10.1088/0741-3335/42/12b/326

Google Scholar

[11] Y. Wu and M. A. Lieberman, Plasma Sources Sci. Technol. Vol. 9 (2000) p.210.

Google Scholar

[12] M. H. Khater and L. J. Overzet, Plasma Sources Sci. Technol. Vol. 9 (2000) p.545.

Google Scholar

[13] Y. Setsuhara, T. Shoji, A. Ebe, S. Baba, N. Yamamoto, K. Takahashi, K. Ono and S. Miyake, Surf. Coatings. Tehcnol. Vol. 174-175 (2003) P. 33.

DOI: 10.1016/s0257-8972(03)00523-1

Google Scholar

[14] Y. Setsuhara, K. Takenaka, A. Ebe, K. Nishisaka, Plasma Process. Polym. Vol. 4 (2007) P. S628.

Google Scholar

[15] E. Takahashi, Y. Nishigami, A. Tomyo, M. Fujiwara, H. Kaki, K. Kubota, T. Hayashi, K. Ogata, A. Ebe and Y. Setsuhara, Jpn. J. Appl. Phys. Vol. 46 (2007) P. 1280.

DOI: 10.1143/jjap.46.1280

Google Scholar

[16] K. Takenaka, Y. Setsuhara, K. Nishisaka, A. Ebe, S. Sugiura, K. Takahashi and K. Ono, Jpn. J. Appl. Phys. Vol. 10B (2006) P. 8046.

DOI: 10.1143/jjap.45.8046

Google Scholar