Glass Forming Ability and Thermal Properties of a Cu-Based Bulk Metallic Glass Microalloyed with Silicon

Article Preview

Abstract:

The (Cu42Zr42Al8Ag8)100-xSix amorphous alloy rods, x =0 to 1, with 3 mm in diameter were prepared by Cu-mold drop casting method. The glass forming ability, thermal properties and microstructure evolution was studied by differential scanning calorimetry (DSC), and X-ray diffractometry (XRD). The XRD result reveals that these as-quenched (Cu42Zr42Al8Ag8)100-xSix alloy rods exhibit a broaden diffraction pattern of amorphous phase. The crystallization temperature and GFA (glass forming ability) of (Cu42Zr42Al8Ag8)100-xSix alloys increase with the silicon additions. The highest Trg (0.59) and γ value (0.405) occurred at the (Cu42Zr42Al8Ag8)99.75Si0.25 and (Cu42Zr42Al8Ag8)99.5Si0.5 alloy. In addition, both of the activation energy of crystallization and the incubation time of isothermal annealing for these (Cu42Zr42Al8Ag8)100-xSix alloys indicates that the (Cu42Zr42Al8Ag8)99.25Si0.75 alloy posses the best thermal stability among the (Cu42Zr42Al8Ag8)100-xSix alloy system.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Pages:

1341-1344

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Zhang, A. Inoue, and T. Masumoto, Mater. Trans. JIM 32 (1991) 1005.

Google Scholar

[2] A. Pecker and W. L. Johnson, Appl. Phys. Lett., 63 (1993) 2342.

Google Scholar

[3] A. Inoue, N. Nishiyama, and T. Matsuda, Mater. Trans. JIM 37 (1996) 181.

Google Scholar

[4] A. Inoue, H. Yamaguchi, T. Zhang, and T. Masumoto, Mater. Trans. JIM. 31 (1990) 104.

Google Scholar

[5] T. Zhang, A. Inoue, and T. Masumoto, Mater. Trans. JIM 39 (1998) 1001.

Google Scholar

[6] J. P. Lu, C. T. Liu, J. R. Thompson, and W. D. Porter, Phts. Rev. Lett. 92 (2004) 245503.

Google Scholar

[7] J. Shen, Q. J. Chen, J. F. Sun, H. B. Fan, and G. Wang, Appl. Phys. Lett. 86 (2005) 151907.

Google Scholar

[8] T. Itoi and A. Inoue, Mater. Trans. JIM 41 (2000) 1256.

Google Scholar

[9] S. Yi, T. G. Park, and D. H. Kim, J. Mater. Res. 15 (2000) 2425.

Google Scholar

[10] T. Zhang, and A. Inoue, Mater. Trans. JIM 43 (2002) 708.

Google Scholar

[11] Inoue,W. Zhang, T. Zhang, K. Kurosaka, Acta Mater. 49 (2001) 2645.

Google Scholar

[12] Inoue,W. Zhang, T. Zhang, K. Kurosaka, J Non Cryst Solids 304 (2002) 200.

Google Scholar

[13] J. Eckert, J. Das, K. B. Kim, F. Baier, M. B. Tang, W. H. Wang, and Z. F. Zhang, Intermetallics 14 (2006) 876.

Google Scholar

[14] W. Zhang, F. Jia, Q. Zhang, and A. Inoue, Mater. Sci. Eng., A459 (2007) 330.

Google Scholar

[15] J. Schroers, W. L. Johnson, Appl. Phys. Lett., 84 (2004) 3666.

Google Scholar

[16] J. Schroers, B. Lohwongwatana, W. L. Johnson, and A. Peker, Appl. Phys. Lett., 87 (2005) 061912-1.

DOI: 10.1063/1.2008374

Google Scholar

[17] A. Inoue,W. Zhang, T. Zhang, K. Kurosaka, Mater. Trans. 42 (2001) 1149.

Google Scholar

[18] T. Zhang, A. Inoue, Mater. Trans. 43 (2002) 1367.

Google Scholar

[19] Z. P. Lu and C. T. Liu, Acta Metall., 50 (2002) 3501.

Google Scholar

[20] H. E. Kissinger, Analyst. Chem., vol. 29 (1957) 170.

Google Scholar

[21] H. Choi-Yim, Busch R, L W. Johnson. J Appl Phys 83 (1998) 7993.

Google Scholar

[22] Z. P. Lu and C. T. Liu, W. D. Porter, Appl Phys Lett 83 (2003) 2581.

Google Scholar

[23] Z. P. Lu and C. T. Liu, Intermetallics 13 (2005) 415.

Google Scholar

[24] C. T. Liu, M. F. Chisholm, and M. K. Miller. Intermetallics 10 (2002) 1105.

Google Scholar

[25] J. S. C. Jang, L. J. Chang, Y. T. Jiang, and P.W. Wong, Mater. Sci. Forum426-432 (2003) 1879.

Google Scholar

[26] J. S. C. Jang, Y. W. Chen, L. J. Chang, G. J. Chen, Mater. Chem. Phys. 88 (2004) 227.

Google Scholar

[27] A. Inoue, T. Zhang, and T. Masumoto, J Non Cryst Solids 156-158 (1993) 473.

Google Scholar

[28] A. Inoue, Acta Mater 48 (2000) 279.

Google Scholar

[29] Q. Zhang, W. Zhang and A. Inoue, Scripta Materialia 55 (2006) 711-713.

Google Scholar

[30] D. Turnbull, Contemp. Phys. 10 (1969) 473.

Google Scholar

[31] W. L. Johnson, MRS Bull. 24 (10) (1999) 42.

Google Scholar

[32] Z. P. Lu and C. T. Liu, Intermetallics 12 (2004) 1035.

Google Scholar

[33] H. E. Kissinger: Analyst. Chem., 29 (1957) 1702.

Google Scholar

[34] M. Avrami : J. Chem. Phys., 7 (1939)1103.

Google Scholar

[35] J. S. C. Jang, S. F. Tsao, L. J. Chang, G. J. Chen, J. C. Huang, J. Non-Cryst. Solids 352 (2006) 71.

Google Scholar

[36] J. S. C. Jang, L. J. Chang, T. H. Hung, J. C. Huang, and C. T. Liu, Intermetallics 14 (2006) 951.

Google Scholar