The Alloy Design of Metallic Interconnector of Solid Oxide Electrolyte Fuel Cell (SOFC)

Abstract:

Article Preview

This study is intended to reduce the difference of thermal expansion coefficient between metallic interconnector and solid electrolyte of SOFC (Solid Oxide Fuel Cell) without sacrificing of electrical conductivity. Fe-Cr alloys have been chosen as candidate materials due to its merit of low cost and high temperature oxidation resistance. Different amount of alloys element and compositions have been varied to optimize the properties by method of alloys design with aid of thermodynamics software Thermal-Cal. Phase diagrams of multi-components alloys have been drawn to predict the possible stable phases formed in the investigated metals. An arc melter and plasma melting furnace were used to melt the investigated alloys. The measurements of thermal expansion coefficients and electrical conductivities are carried out with TMA and ASR resistance instrument. The results indicate that the Fe-10Cr alloy exhibits the smallest thermal expansion coefficient among the alloys, while Fe-16Cr has a lowest electrical resistance .

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee

Pages:

1617-1620

DOI:

10.4028/www.scientific.net/MSF.561-565.1617

Citation:

I. B. Chen et al., "The Alloy Design of Metallic Interconnector of Solid Oxide Electrolyte Fuel Cell (SOFC)", Materials Science Forum, Vols. 561-565, pp. 1617-1620, 2007

Online since:

October 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.