First-Principles Studies on Grain Boundary Energies of [110] Tilt Grain Boundaries in Aluminum

Abstract:

Article Preview

The grain boundary structure and its energy are necessary for the fundamental understanding of the physical properties of materials. In aluminum, three distinct atomic structures of a Σ9(221)[110] tilt grain boundary have been reported in previous studies using atomistic simulations and a high-resolution transmission electron microscopy (HRTEM). In this work, we studied the atomic structure and energy of the Σ9 tilt grain boundary in aluminum using first-principles calculations. A comparison of the grain boundary energies among the three distinct Σ9 tilt grain boundaries determined through first-principles calculations allowed us to identify the most stable atomic structure of Σ9 tilt grain boundary in aluminum.

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee

Pages:

1837-1840

Citation:

Y. Inoue et al., "First-Principles Studies on Grain Boundary Energies of [110] Tilt Grain Boundaries in Aluminum", Materials Science Forum, Vols. 561-565, pp. 1837-1840, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] A. P. Sutton and R. W. Balluffi, Interface in Crystalline Materials (Clarendon Press, Oxford, 1995).

[2] M. J. Mills, M. S. Daw, G. J. Thomas, and F. Cosandey, Ultramicroscopy 40, 247 (1992).

[3] J. M. Penisson, U. Dahmen, and M. J. Mills, Phil. Mag. Lett. 64, 277 (1991).

[4] U. Dahmen, C. J. D. Hetherington, M. A. Okeefe, K. H. Westmacott, M. J. Mills, M. S. Daw, and V. Vitek, Phil. Mag. Lett. 62, 327 (1990).

[5] N. Chandra and P. Dang, J. Mater. Sci. 34, 655 (1999).

[6] S. Ogata, H. Kitagawa, Y. Maegawa, and K. Saitoh, Comput. Mater. Sci. 7, 271 (1997).

[7] F. Sansoz and J. F. Molinari, Acta Mater. 53, 1931 (2005).

[8] A. F. Wright and S. R. Atlas, Phys. Rev. B 50, 15248 (1994).

[9] T. Uesugi, Y. Takigawa, and K. Higashi, Mater. Trans. 46, 1117 (2005).

[10] T. Uesugi, M. Kohyama, and K. Higashi, Phys. Rev. B 68, 184103 (2003).

[11] T. Uesugi, M. Kohyama, M. Kohzu, and K. Higashi, Mater. Trans. 42, 1167 (2001).

[12] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

[13] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[14] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[15] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

[16] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

[17] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

[18] O. H. Nielsen and R. M. Martin, Phys. Rev. B 32, 3780 (1985).

[19] O. H. Nielsen and R. M. Martin, Phys. Rev. B 32, 3792 (1985).

[20] T. H. Fischer and J. Almlof, J. Phys. Chem. 96, 9768 (1992).

[21] T. Uesugi, Y. Inoue, and K. Higashi, Submitted to Phil. Mag. Lett.

[22] G. H. Lu, S. H. Deng, T. M. Wang, M. Kohyama, and R. Yamamoto, Phys. Rev. B 69, 134106 (2004).

[23] G. H. Lu, M. Kohyama, and R. Yamamoto, Phil. Mag. Lett. 83, 159 (2003).

[24] G. H. Lu, A. Suzuki, A. Ito, M. Kohyama, and R. Yamamoto, Phil. Mag. Lett. 81, 757 (2001).

[25] G. H. Lu, M. Kohyama, and R. Yamamoto, Mater. Trans. 42, 2238 (2001).

[26] G. H. Lu, A. Suzuki, A. Ito, M. Kohyama, and R. Yamamoto, Mater. Trans. 44, 337 (2003).

[27] G. H. Lu, A. Suzuki, A. Ito, M. Kohyama, and R. Yamamoto, Model. Simul. Mater. Sci. Eng. 8, 727 (2000).

[28] J. M. Cowley and A. F. Moodie, Acta Cryst. 10, 609 (1957).

[29] W. O. Saxton, M. A. O'Keefe, D. J. H. Cockayne, and M. Wilkens, Ultramicroscopy 12, 75 (1983).

Fetching data from Crossref.
This may take some time to load.