The Thermal, Mechanical and Electronic Properties of Nanoscale Materials: Ab Initio Study

Article Preview

Abstract:

The mechanical, thermal and electronic properties of the nanoscale materials are studied using an ab initio molecular dynamics (TBMD) method and statistical moment method (SMM). We investigate the mechanical properties of nanoscale materials like carbon nanotubes (CNT), graphens and nanowires in comparison with those of corresponding bulk materials. The electronic density of states and electronic transports of the nanoscale materials, with and without the atomistic defects are also discussed. We will show that the thermodynamic and strength properties of the nanoscale materials are quite different from those of the corresponding bulk materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Pages:

1931-1934

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Trends in Nanoscale Mechanics, ed. By V. M. Harik and M. D. Salas, (Kluwer Academic Publishers, 2003).

Google Scholar

[2] Nanoscale Materials, ed. By L. M. Liz-Marzán and P. V. Kamlat, (Liuwer Academic, 2003).

Google Scholar

[3] Semiconductor Nanocrystals, ed. By D. J. Lockwood, (Kluwer Academic/Plenum, 2003).

Google Scholar

[4] S. Iijima, Nature 354 (1991) 56.

Google Scholar

[5] K. Masuda-Jindo and R. Kikuchi, Int. J. of Nanoscience, 1, (2002) 357-371.

Google Scholar

[6] A. Hansson, M. Paulsson and S. Stafström, Phys. Rev. B62, (2000) 7639.

Google Scholar

[7] A. J. Lu and B. C. Pan, Phys. Rev. Lett., 92 (2004) 105504.

Google Scholar

[8] P. Ordejon, D. Lebedenko and M. Menon, Phys. Rev. B50 (1994) 5645.

Google Scholar

[9] M. Menon, E. Richter and K. R. Subbaswamy, J. Chem. Phys. 104, (1996) 5875.

Google Scholar

[10] K. Masuda-Jindo, V. V. Hung and M. Menon, International Journal of Fracture 125, (2006) 1.

Google Scholar

[11] K. Masuda-Jindo, Vu Van Hung and M. Menon, Phys. stat. sol. (c) 2, No. 6, (2005) 1781.

Google Scholar

[12] K. Masuda-Jindo and Vu Van Hung, J. Phys. Soc. Jap. 73 (2004) 1205.

Google Scholar

[13] V. V. Hung and K. Masuda-Jindo, J. Phys. Soc. Jap. 69 (2000) (2067).

Google Scholar

[14] K. Masuda-Jindo, Vu Van Hung and Pham Dinh Tam, Phys. Rev. B67(2003) 094301.

Google Scholar

[15] K. Masuda-Jindo, S. Nishitani and Vu Van Hung, Phys. Rev. B70(2004) 184122.

Google Scholar

[16] M. B. Nardelli, B. I. Yakobson and J. Bernholc, Phys. Rev. B57, (1998) R4277.

Google Scholar

[17] M. B. Nardelli, B. I. Yakobson and J. Bernholc, Phys. Rev. Lett. 81, (1998) 4656.

Google Scholar

[18] B. I. Yakobson, Appl. Phys. Lett., 72, (1998) 918.

Google Scholar

[19] S. Datta, Electronic Transport in Mesoscopic Systems, (Cambridge University press, Cambridge, 1995).

Google Scholar

[20] M. B. Nardelli, Phys. Rev. B60, (1999) 7828.

Google Scholar

[21] N. Andriotis and M. Menon, J. Chem. Phys. 115, (2001) 2737.

Google Scholar