A Characteristic of Spherical Indentation Curve and its Application in Measuring Material Properties

Article Preview

Abstract:

The spherical indentation obeys Hertz contact theory when the applied load is within the elastic limit. Once the applied load is over the elastic limit, the indentation curve starts to deviate from the original purely elastic indentation curve. This deviation point, which indicates the start of the nonlinear deformation, is an important characteristic of a spherical indentation curve. The indentation force corresponding to the deviation point is related to a basic material constant, which is the yield stress for an elastic-plastic material or the transformation stress for a shape memory alloy. This relationship can be applied to measure the yield stress or the transformation stress from a simple spherical indentation curve. Detailed discussion on the relationship and the method is presented in this short paper.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Pages:

2131-2134

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. C. Oliver, G. M. Pharr, J. Mater. Res. Vol. 7 (1992), p.1564.

Google Scholar

[2] J. S. Field, M. V. Swain, J. Mater. Res. Vol. 8 (1993), p.297.

Google Scholar

[3] J. S. Field, M. V. Swain, J. Mater. Res. Vol. 10 (1995), p.101.

Google Scholar

[4] Y. -T. Cheng, C. -M. Cheng, Appl. Phys. Lett. Vol. 73 (1998), p.614.

Google Scholar

[5] K. Tunvisut, N. P. O'Dowd, E. P. Busso, Int. J. Solids Struct. Vol. 38 (2001), p.335.

Google Scholar

[6] Y. -T. Cheng, C. -M. Cheng, Mat. Sci. Eng. R Vol. 44 (2004), p.91.

Google Scholar

[7] L. Qian, X. Xiao, Q. Sun, T. Yu, Appl. Phys. Lett. Vol. 84 (2004), p.1076.

Google Scholar

[8] W. Yan, Q. Sun, L. Qian, X. Feng, Int. J. Solids Struct. Vol. 44 (2007), p.1.

Google Scholar

[9] D. Tabor: The Hardenss of Metals (Oxford University Press, London 1951).

Google Scholar

[10] A. E. Giannakopoulos, S. Suresh, Scripta Mater. Vol. 40 (1991), p.1191.

Google Scholar

[11] M. Dao, N. Chollacoop, K. J. VanVliet, T. A. Venkatesh, S. Suresh., Acta Mater. Vol. 49 (2001), p.3899.

Google Scholar

[12] M. Zhao, N. Ogasawara, N. Chiba and X. Chen, Acta Mater. Vol. 54 (2006), p.23.

Google Scholar

[13] B. Taljat, T. Zacharia, F. Kosel, Int. J. Solids Struct. Vol. 35 (1998), p.4411.

Google Scholar

[14] E. G. Herbert, G. M. Pharr, W. C. Oliver, B. N. Lucas, J. L. Hay, Thin Solid Films, Vol. 398399 (2001), p.331.

Google Scholar

[15] M. Beghini, L. Bertini, V. Fontanari, Int. J. Solids Struct., Vol. 43 (2006), p.2441.

Google Scholar

[16] K. L. Johnson: Contact Mechanics (Cambridge University Press, London 1985).

Google Scholar

[17] W. Yan, Q. Sun, X. -Q. Feng and L. Qian, Appl. Phys. Lett. Vol. 88 (2006), p.241912.

Google Scholar

[18] W. Yan, Q. Sun and P. D. Hodgson, Scripta mater. (2007), submitted.

Google Scholar

[19] S. Garcia-Manyes, A. G. Guell, P. Gorostiza and F. Sanz, J. Chem. Phys. Vol. 123 (2005), p.114711.

Google Scholar