Negative Thermal Expansion in Mn3Ga(Ge,Si)N Anti-Perovskite Materials

Article Preview

Abstract:

Mn3GaN has anti-perovskite structure and there exists an abnormal thermal expansion behavior in accompanying with a magnetic transition and variation of electronic transport properties. Substitution of Ga by Ge(Si) induces the change of the thermal expansion properties and the corresponding temperature range. The structure, heat capacity, magnetic and electronic transport properties of Mn3Ga(Ge,Si)N were investigated and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Pages:

557-562

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.F. Bertaut, D. Fruchart, J.P. Bouchaud and R. Fruchart: Solid State Commun Vol. 6 (1968) , p.251.

DOI: 10.1016/0038-1098(68)90098-7

Google Scholar

[2] E.V. Gomonaj, V.A. Lvov: Journal of Magnetism and Magnetic Materials Vol. 86 (1990), p.301.

Google Scholar

[3] T. Kanomata, M. Kikuchi: Solid State Communications Vol. 101( 1996), p.811.

Google Scholar

[4] K. Kamishima, T. Goto: Journal of Magnetism Materials Vol. 177-181(1998), p.587.

Google Scholar

[5] R. Niewa, W. Schnelle: Z. Anorg. Allg. Chem Vol. 627 (2001), p.365.

Google Scholar

[6] F. Gäbler, M. Kirchner: Z. Anorg. Allg. Chem Vol. 630 (2004), p.2292.

Google Scholar

[7] M.Y. Chern, D.A. Vennos: J. Solid State Chem Vol. 96 (1992), p.415.

Google Scholar

[8] J. Jäger, Dagmar Stahl: Angnew. Chem. Int. Ed. Engl Vol. 32 (1993), p.709.

Google Scholar

[9] M. S. Miao, Aditi Herwadkar, and Walter R. L. Lambrecht: Phys. Rev. B Vol. 72 (2005), p.033204.

Google Scholar

[10] K. Kamishima ,T. Goto and H. Nakagawa: Phys. Rev. B Vol. 63 (2000), p.024426. 280 300 320 340 360 380 400 2 3 4 5 a Resistivity (mΩΩΩΩ cm) Temperature(K) 280 300 320 340 360 380 400 0. 56 0. 60 0. 64 0. 68 b Resistivity (mΩΩΩΩ cm) Temperature(K).

Google Scholar

[11] Ming-hui Yu, L.H. Lewis and A.R. Moodenbaugh: Journal of Magnetism and Magnetic Materials Vol. 299 (2006), p.317.

Google Scholar

[12] E. O. Chi et al.: Solid State Commun Vol. 120 (2001), p.307.

Google Scholar

[13] Z. A. Ren, G. C. Che et al.: Physica C Vol. 371 (2002), p.1.

Google Scholar

[14] A.F. Dong , G.C. Che and W.W. Huang: Physica C Vol. 422 (2005), p.65.

Google Scholar

[15] Koshi. Takenaka and Hidenori. Takagi: Applied Physics Letters Vol. 87 (2005), p.261902.

Google Scholar

[16] Koshi. Takenaka and Hidenori. Takagi: Materials Transactions. Vol . 47, No. 3 (2006), p.471.

Google Scholar

[17] W.S. Kim, E.O. Chi and J.C. Kim: Solid Sate communication. Vol. 119 (2001), p.507.

Google Scholar

[18] C. Dong: J. Appl. Cryst. Vol. 32 (1999), p.838.

Google Scholar

[19] J.P. Jardin and J. Labbe: Journal of solid state chemistry Vol. 46 (1983), p.275.

Google Scholar

[20] D. Fruchart and E.F. Bertaut: Journal of the physical society of Japan Vol. 44, No. 3 (1978), p.781.

Google Scholar

[21] Y. Yamamura, N. Nakajima, T. Tsuji: Solid State Communications Vol. 114 (2000), p.453.

Google Scholar

[22] Yasuhisa Yamamura et al: J. Chem. Thermodynamics Vol. 36 (2004), p.525.

Google Scholar

[23] Y. B. Li, W. F. Li and W. J. Feng: Phys. Rev. B Vol. 72 (2005), p.024411.

Google Scholar