Negative Thermal Expansion in Mn3Ga(Ge,Si)N Anti-Perovskite Materials

Abstract:

Article Preview

Mn3GaN has anti-perovskite structure and there exists an abnormal thermal expansion behavior in accompanying with a magnetic transition and variation of electronic transport properties. Substitution of Ga by Ge(Si) induces the change of the thermal expansion properties and the corresponding temperature range. The structure, heat capacity, magnetic and electronic transport properties of Mn3Ga(Ge,Si)N were investigated and discussed.

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee

Pages:

557-562

DOI:

10.4028/www.scientific.net/MSF.561-565.557

Citation:

Y. Sun et al., "Negative Thermal Expansion in Mn3Ga(Ge,Si)N Anti-Perovskite Materials", Materials Science Forum, Vols. 561-565, pp. 557-562, 2007

Online since:

October 2007

Export:

Price:

$35.00

[1] E.F. Bertaut, D. Fruchart, J.P. Bouchaud and R. Fruchart: Solid State Commun Vol. 6 (1968) , p.251.

DOI: 10.1016/0038-1098(68)90098-7

[2] E.V. Gomonaj, V.A. Lvov: Journal of Magnetism and Magnetic Materials Vol. 86 (1990), p.301.

[3] T. Kanomata, M. Kikuchi: Solid State Communications Vol. 101( 1996), p.811.

[4] K. Kamishima, T. Goto: Journal of Magnetism Materials Vol. 177-181(1998), p.587.

[5] R. Niewa, W. Schnelle: Z. Anorg. Allg. Chem Vol. 627 (2001), p.365.

[6] F. Gäbler, M. Kirchner: Z. Anorg. Allg. Chem Vol. 630 (2004), p.2292.

[7] M.Y. Chern, D.A. Vennos: J. Solid State Chem Vol. 96 (1992), p.415.

[8] J. Jäger, Dagmar Stahl: Angnew. Chem. Int. Ed. Engl Vol. 32 (1993), p.709.

[9] M. S. Miao, Aditi Herwadkar, and Walter R. L. Lambrecht: Phys. Rev. B Vol. 72 (2005), p.033204.

[10] K. Kamishima ,T. Goto and H. Nakagawa: Phys. Rev. B Vol. 63 (2000), p.024426. 280 300 320 340 360 380 400 2 3 4 5 a Resistivity (mΩΩΩΩ cm) Temperature(K) 280 300 320 340 360 380 400 0. 56 0. 60 0. 64 0. 68 b Resistivity (mΩΩΩΩ cm) Temperature(K).

[11] Ming-hui Yu, L.H. Lewis and A.R. Moodenbaugh: Journal of Magnetism and Magnetic Materials Vol. 299 (2006), p.317.

[12] E. O. Chi et al.: Solid State Commun Vol. 120 (2001), p.307.

[13] Z. A. Ren, G. C. Che et al.: Physica C Vol. 371 (2002), p.1.

[14] A.F. Dong , G.C. Che and W.W. Huang: Physica C Vol. 422 (2005), p.65.

[15] Koshi. Takenaka and Hidenori. Takagi: Applied Physics Letters Vol. 87 (2005), p.261902.

[16] Koshi. Takenaka and Hidenori. Takagi: Materials Transactions. Vol . 47, No. 3 (2006), p.471.

[17] W.S. Kim, E.O. Chi and J.C. Kim: Solid Sate communication. Vol. 119 (2001), p.507.

[18] C. Dong: J. Appl. Cryst. Vol. 32 (1999), p.838.

[19] J.P. Jardin and J. Labbe: Journal of solid state chemistry Vol. 46 (1983), p.275.

[20] D. Fruchart and E.F. Bertaut: Journal of the physical society of Japan Vol. 44, No. 3 (1978), p.781.

[21] Y. Yamamura, N. Nakajima, T. Tsuji: Solid State Communications Vol. 114 (2000), p.453.

[22] Yasuhisa Yamamura et al: J. Chem. Thermodynamics Vol. 36 (2004), p.525.

[23] Y. B. Li, W. F. Li and W. J. Feng: Phys. Rev. B Vol. 72 (2005), p.024411.

In order to see related information, you need to Login.