Atomistic Studies of Deformation Mechanism of Nanocrystalline Al-Ti and Al-Fe Alloys from First-Principles

Article Preview

Abstract:

We investigated the contribution to the high yield strength due to the solid solution strengthening in nanocrystalline Al-Ti alloys produced by a vapor quench method. The misfit strain due to solute Ti atom in aluminum was obtained from the first principles calculation. Then, the theoretical result of the contribution to the yield strength due to the solid solution strengthening was estimated from the misfit strain using the Friedel’s theory. In dilute Al-Ti alloy, the theoretical results of the solid solution strengthening from the misfit strain was in good agreement with the analytical result using the measured grain size and yield stress.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Pages:

977-980

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Kumagai, H. Sasaki, K. Kita, J. Nagahora, and A. Inoue: J. Jpn. Inst. Met. Vol. 65 (2001), p.366.

Google Scholar

[2] T. Mukai, S. Suresh, K. Kita, H. Sasaki, N. Kobayashi, K. Higashi, and A. Inoue: Acta Mater. Vol. 51 (2003), p.4197.

Google Scholar

[3] H. Sasaki, K. Kita, J. Nagahora, and A. Inoue: Mater. Trans. Vol. 42 (2001), p.1561.

Google Scholar

[4] T. Uesugi, Y. Takigawa, and K. Higashi: Mater. Sci. Forum Vol. 503-504 (2006), p.209.

Google Scholar

[5] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos: Rev. Mod. Phys. Vol. 64 (1992), p.1045.

Google Scholar

[6] P. Hohenberg and W. Kohn: Phys. Rev. Vol. 136 (1964), p. B864.

Google Scholar

[7] W. Kohn and L. J. Sham: Phys. Rev. Vol. 140 (1965), p. A1133.

Google Scholar

[8] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais: Phys. Rev. B Vol. 46 (1992), p.6671.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[9] N. Troullier and J. L. Martins: Phys. Rev. B Vol. 43 (1991), p. (1993).

Google Scholar

[10] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990), p.7892.

Google Scholar

[11] C. L. Fu and K. M. Ho: Phys. Rev. B Vol. 28 (1983), p.5480.

Google Scholar

[12] H. J. Monkhorst and J. D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[13] N. J. Petch: J. Iron Steel Inst., London Vol. 174 (1953), p.25.

Google Scholar

[14] E. O. Hall: Proc. Phys. Soc. London Sect. B Vol. 64 (1951), p.747.

Google Scholar

[15] H. Fujita and T. Tabata: Acta Metall. Vol. 21 (1973), p.355.

Google Scholar

[16] N. Hansen: Trans. Metall. AIME Vol. 245 (1969), p. (2061).

Google Scholar

[17] J. W. Wyrzykowski and M. W. Grabski: Philos. Mag. A Vol. 53 (1986), p.505.

Google Scholar

[18] M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon: Philos. Mag. A Vol. 78 (1998), p.203.

Google Scholar

[19] Z. Horita, T. Fujinami, M. Nemoto, and T. G. Langdon: Metall. Mater. Trans. A Vol. 31 (2000), p.691.

Google Scholar

[20] H. Nagahama, K. Ohtera, K. Higashi, A. Inoue, and T. Masumoto: Philos. Mag. Lett. Vol. 67 (1993), p.225.

Google Scholar

[21] J. Friedel: Dislocations (Pergamon Press, New York, 1964) p.205.

Google Scholar

[22] D. Hull and D. J. Bacon: Introduction to dislocations, fourth edition (Butterworth-Heinemann, Oxford, 2001) p.220.

Google Scholar

[23] A. H. Cottrell: Strength of Solids (Phys. Soc., London 1948) p.30.

Google Scholar

[24] D. Hull and D. J. Bacon: Introduction to dislocations, fourth edition (Butterworth-Heinemann, Oxford, 2001) p.202.

Google Scholar

[25] J. P. Hirth and J. Lothe: Theory of Dislocations, second edition (Wiley, New York, 1982) p.837.

Google Scholar