Atomistic Studies of Deformation Mechanism of Nanocrystalline Al-Ti and Al-Fe Alloys from First-Principles

Abstract:

Article Preview

We investigated the contribution to the high yield strength due to the solid solution strengthening in nanocrystalline Al-Ti alloys produced by a vapor quench method. The misfit strain due to solute Ti atom in aluminum was obtained from the first principles calculation. Then, the theoretical result of the contribution to the yield strength due to the solid solution strengthening was estimated from the misfit strain using the Friedel’s theory. In dilute Al-Ti alloy, the theoretical results of the solid solution strengthening from the misfit strain was in good agreement with the analytical result using the measured grain size and yield stress.

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee

Pages:

977-980

Citation:

T. Uesugi et al., "Atomistic Studies of Deformation Mechanism of Nanocrystalline Al-Ti and Al-Fe Alloys from First-Principles", Materials Science Forum, Vols. 561-565, pp. 977-980, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] N. Kumagai, H. Sasaki, K. Kita, J. Nagahora, and A. Inoue: J. Jpn. Inst. Met. Vol. 65 (2001), p.366.

[2] T. Mukai, S. Suresh, K. Kita, H. Sasaki, N. Kobayashi, K. Higashi, and A. Inoue: Acta Mater. Vol. 51 (2003), p.4197.

[3] H. Sasaki, K. Kita, J. Nagahora, and A. Inoue: Mater. Trans. Vol. 42 (2001), p.1561.

[4] T. Uesugi, Y. Takigawa, and K. Higashi: Mater. Sci. Forum Vol. 503-504 (2006), p.209.

[5] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos: Rev. Mod. Phys. Vol. 64 (1992), p.1045.

[6] P. Hohenberg and W. Kohn: Phys. Rev. Vol. 136 (1964), p. B864.

[7] W. Kohn and L. J. Sham: Phys. Rev. Vol. 140 (1965), p. A1133.

[8] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais: Phys. Rev. B Vol. 46 (1992), p.6671.

[9] N. Troullier and J. L. Martins: Phys. Rev. B Vol. 43 (1991), p. (1993).

[10] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990), p.7892.

[11] C. L. Fu and K. M. Ho: Phys. Rev. B Vol. 28 (1983), p.5480.

[12] H. J. Monkhorst and J. D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

[13] N. J. Petch: J. Iron Steel Inst., London Vol. 174 (1953), p.25.

[14] E. O. Hall: Proc. Phys. Soc. London Sect. B Vol. 64 (1951), p.747.

[15] H. Fujita and T. Tabata: Acta Metall. Vol. 21 (1973), p.355.

[16] N. Hansen: Trans. Metall. AIME Vol. 245 (1969), p. (2061).

[17] J. W. Wyrzykowski and M. W. Grabski: Philos. Mag. A Vol. 53 (1986), p.505.

[18] M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon: Philos. Mag. A Vol. 78 (1998), p.203.

[19] Z. Horita, T. Fujinami, M. Nemoto, and T. G. Langdon: Metall. Mater. Trans. A Vol. 31 (2000), p.691.

[20] H. Nagahama, K. Ohtera, K. Higashi, A. Inoue, and T. Masumoto: Philos. Mag. Lett. Vol. 67 (1993), p.225.

[21] J. Friedel: Dislocations (Pergamon Press, New York, 1964) p.205.

[22] D. Hull and D. J. Bacon: Introduction to dislocations, fourth edition (Butterworth-Heinemann, Oxford, 2001) p.220.

[23] A. H. Cottrell: Strength of Solids (Phys. Soc., London 1948) p.30.

[24] D. Hull and D. J. Bacon: Introduction to dislocations, fourth edition (Butterworth-Heinemann, Oxford, 2001) p.202.

[25] J. P. Hirth and J. Lothe: Theory of Dislocations, second edition (Wiley, New York, 1982) p.837.

Fetching data from Crossref.
This may take some time to load.