[1]
N.E. Dowling, J.A. Begley: ASTM STP 590, (1976), pp.82-103.
Google Scholar
[2]
Y.L. Lu, H. Kobayashi: Fatigue & Fracture of Eng. Mater. & Struct. Vol. 19 (1996), pp.1081-1091.
Google Scholar
[3]
D. Rozumek, E. Macha: Opole University of Technology, (2006), p.198 (in Polish).
Google Scholar
[4]
D. Rozumek: The Archive of Mechanical Engineering, Vol. LIII (2006), pp.211-225.
Google Scholar
[5]
A. Thum, C. Petersen, O. Swenson: Verformung, Spannung und Kerbwirkung. VDI, Dusseldorf (1960).
Google Scholar
[6]
D. Rozumek, M. Hepner: Materials Engineering Vol. 2 (2005), pp.81-83 (in Polish).
Google Scholar
[7]
D. Rozumek: 12 th Int. Conference on Experimental Mechanics (ICEM12), Politecnico di Bari, (2004), pp.275-276 and CD, ps. 8.
Google Scholar
[8]
D.O. Harris: J. Bas. Engng. Vol. 89 (1967), pp.121-126 (a) 1E-4 1E-3 1E-2 0. 1 J (MPa·m) 1E-9 1E-8 1E-7 1E-6 1E-5 da/dN (m/cycle) ∆.
DOI: 10.7717/peerj.2756/fig-2
Google Scholar
[10]
10 10 10 -4 -3 -2 -1 -5 -6 -8 -9.
Google Scholar
[10]
[10] [10] [10] [1] [2] 3 Ti-6Al-4V TITANIUM ALLOY.
Google Scholar
[1]
[2] [3] 10-7 R = 0, exp. R = 0, Eq. (1) R = - 0. 5, exp. R = - 0. 5, Eq. (1) R = - 1, exp. R = - 1, Eq. (1) (b) 1E-4 1E-3 1E-2 0. 1 J (MPa·m) 1E-8 1E-7 1E-6 1E-5 da/dN (m/cycle) ∆.
DOI: 10.7717/peerj.2756/fig-2
Google Scholar
[10]
10 10 10 -4 -3 -2 -1 -5 -6 -7 -8.
Google Scholar
[10]
[10] [10] [10] [1] [2] [3] AlCu4Mg1 ALUMINIUM ALLOY.
Google Scholar
[1]
[2] [3] R = 0, exp. R = 0, Eq. (1) R = -0. 5, exp. R = -0. 5, Eq. (1) R = -1, exp. R = -1, Eq. (1) Fig. 3 A comparison of the experimental results with calculated ones according to Eq. (1) for (a) Ti-6Al-4V and (b) AlCu4Mg1 Ma.
Google Scholar