Solute and Temperature Effects on the Strain Hardening Behaviour of Mg-Zn Solid Solutions

Article Preview

Abstract:

The Kocks-Mecking method of analysis is applied to solid solutions of up to 2.6 at.% Zn to separate the contributions to the alloys’ strain hardening rate from dislocations storage, solute in solution, and twinning, for temperatures between -50 °C (273 K) and 200 °C (473 K). Athermal storage of dislocations seems to account for the largest share of the strain hardening rate for both the pure metal and the solid solutions at or below room temperature. Solute in solution does not increase the strain hardening rate over that of pure Mg, although it delays the onset of dynamic recovery, especially for the higher alloys, presumably due to short range order. Twinning remains a very important deformation mechanism for the pure metal and the dilute alloys up to 200 °C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 567-568)

Pages:

45-50

Citation:

Online since:

December 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.H. Cáceres and A.H. Blake: Mater. Sci. Engng. A Vol. 462 (2007), p.193.

Google Scholar

[2] D. Kuhlmann-Wilsdorf: Metall. Mater. Trans. A Vol. 35 (2004), p.369.

Google Scholar

[3] A. Seeger, in: Dislocations and mechanical properties of crystals, edited by J.C. Fisher, W.G. Johnston, R. Thomson and T. Vreeland (Chapman and Hall, London, 1957), p.243.

Google Scholar

[4] A. Akhtar and E. Teghtsoonian: Acta Metall. Vol. 17 (1969), p.1339.

Google Scholar

[5] A. Akhtar and E. Teghtsoonian: Acta Metall. Vol. 17 (1969), p.1351.

Google Scholar

[6] R.W. Armstrong, in: T.N. Baker (Ed. ) Yield, flow and fracture of polycrystals, (Applied Science Publishers, London, 1983), p.1.

Google Scholar

[7] A.H. Blake and C.H. Cáceres: Mater. Sci. Engng. A http: /dx. doi. org/10. 1016/j. msea. 2006. 10. 205 (2007).

Google Scholar

[8] G.E. Mann, T. Sumitomo, C.H. Cáceres, and J.R. Griffiths: Mater. Sci. Engng. A Vol. 456 (2007), p.138.

Google Scholar

[9] J. Bohlen, P. Dobron, J. Swiostek, D. Letzig, F. Chmelik, P. Lukac, and K.U. Kainer: Mater. Sci. Engng. A http: /dx. doi. org/10. 1016/j. msea. 2006. 02. 470 (2007).

Google Scholar

[10] E.W. Kelley and W.F. Hosford: Trans. AIME Vol. 242 (1968), p.5.

Google Scholar

[11] A. Jain and S.R. Agnew: Mater. Sci. Engng. A http: /dx. doi. org/10. 1016/j. msea. 2006. 03. 160 (2007).

Google Scholar

[12] K. Mathis, F. Chmelik, M. Janecek, B. Hadzima, Z. Trojanova, and P. Lukac: Acta Mater. Vol. 54 (2006), p.5361.

Google Scholar

[13] E. Meza-Garcia, P. Dobron, J. Bohlen, D. Letzig, F. Chmelik, P. Lukac, and K.U. Kainer: Mater. Sci. Engng. A http: /dx. doi. org/10. 1016/j. msea. 2006. 02. 469 (2007).

Google Scholar

[14] C.H. Cáceres and A. Blake: phys. stat. sol. Vol. 194 (a) (2002), p.147.

Google Scholar

[15] J.C. Fisher: Acta Metall. Vol. 2 (1954), p.9.

Google Scholar

[16] A. Blake and C.H. Cáceres, in: N.R. Neelameggham, H.I. Kaplan and B.R. Powell (Eds. ) Magnesium Technology 2005, San Francisco; 2005 (TMS, Warrendale), 403.

Google Scholar

[17] U.F. Kocks and H. Mecking: Prog. Mater. Sci. Vol. 48 (2003), p.171.

Google Scholar

[18] M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Acta Mater. Vol. 52 (2004), p.5093.

Google Scholar

[19] S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater. Vol. 49 (2001), p.4277.

Google Scholar

[20] G.E. Mann, T. Sumitomo, C.H. Cáceres, and J.R. Griffiths: Mater. Sci. Engng. A Vol. 456 (2007), p.138.

Google Scholar

[21] S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel: Scripta Mater. Vol. 48 (2003), p.1003.

Google Scholar

[22] S.N. Tiwari and K. Tangri: Mater. Sci. Engng. Vol. 57 (1983), p.31.

Google Scholar