Overview of Fatigue Behaviour of Ultrafine-Grained Copper Produced by Severe Plastic Deformation

Article Preview

Abstract:

Fatigue behaviour of ultrafine-grained copper of purity 99.9 % produced by ECAP technique was studied in a broad region of stress amplitudes. Fatigue strength is by a factor of about 2 higher than that of conventional-grain-size copper in the broad region of fatigue lives from 6x103 to 2x1010 cycles. The grain structure is stable and undergoes only very marginal changes during cycling. Fatigue slip markings on specimen surface follow the trace of the shear plane of the last ECAP pass. Fatigue notch sensitivity is also higher than that of conventional-grain-size copper, but not dramatically. The cyclic stress-strain curve of studied copper is temperature insensitive, while its S-N curve is temperature dependent.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 567-568)

Pages:

9-16

Citation:

Online since:

December 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.C. Lowe: JOM, Vol. 58 (2006), p.28.

Google Scholar

[2] M.A. Meyers, A. Mishra and D.J. Benson: Progress Mat. Sci., Vol. 51 (2006), p.427.

Google Scholar

[3] H.W. Höppel, M. Kautz, C. Xu, M. Murashkin, T.G. Langdon, R.Z. Valiev and H. Mughrabi: Int. J. Fatigue, Vol. 28 (2005), p.1001.

Google Scholar

[4] A. Vinogradov: Mater. Sci. Forum, Vol. 503-504 (2006), p.267.

Google Scholar

[5] A. Vinogradov and S. Hashimoto: Advanced Engng. Mater., Vol. 5 (2003), p.351.

Google Scholar

[6] H. Mughrabi, H.W. Höppel and M. Kautz, in: Ultrafine Grained Materials IV, edited by Y.T. Zhu et al., The Minerals, Metals & Materials Society, (2006), p.1.

Google Scholar

[7] P. Lukáš, L. Kunz and M. Svoboda: Mater. Sci. Eng. A, Vol. 391 (2005), p.337.

Google Scholar

[8] L. Kunz, P. Lukáš and M. Svoboda: Mater. Sci. Eng. A, Vol. 424 (2006), p.97.

Google Scholar

[9] P. Lukáš, L. Kunz and M. Svoboda: Met. Mat. Trans. A (2007), in print.

Google Scholar

[10] M.C. Murphy: Fatigue Engng. Mater. Struct., Vol. 4 (1981), p.199.

Google Scholar

[11] P. Lukáš and L. Kunz: Mater. Sci. Eng. A, Vol. 103 (1988), p.233.

Google Scholar

[12] J. Awatani, K. Katagiri, A. Omura and T. Shiraishi: Met. Trans. A, Vol. 6 (1975), p.1029.

Google Scholar

[13] H. Mughrabi, H.W. Höppel and M. Kautz: Scripta Mater., Vol. 51 (2004), p.807.

Google Scholar

[14] S.R. Agnew, A.Y. Vinogradov, S. Hashimoto and J.R. Weertman: J. Electronic Mater., Vol. 28 (1999), p.1038.

Google Scholar

[15] A. Vinogradov and S. Hashimoto: Mater. Trans., Vol. 42 (2001), p.74.

Google Scholar

[16] H. Mughrabi and H.W. Höppel, in: Structure and Mechanical Properties of Nanophase Materials - Theory and Computer Simulation vs. Experiment, edited by D. Farkas et al., Materials Research Society, (2000), p. B2. 1. 1.

Google Scholar

[17] S.R. Agnew and J.R. Weertman: Mat. Sci. Eng. A, Vol. 244 (1998), p.145.

Google Scholar

[18] W.D. Pilkey: Peterson's Stress Concentration Factors (Wiley Interscience Publication, New York, 1997).

Google Scholar

[19] P. Lukáš, L. Kunz, B. Weiss and R. Stickler: Fatigue Fract. Eng. Mater. Struct., Vol. 9 (1986), p.195.

Google Scholar

[20] A. Seeger, in: Handbuch der Physik VII/2, edited by S. Flügge, Springer-Verlag, Berlin, (1958), p.115.

Google Scholar

[21] Z.S. Basinski, A.S. Korbel and S.J. Basinski: Acta Metall., Vol. 28 (1980), p.191.

Google Scholar

[22] C. Holste: Phil. Mag., Vol. 84 (2004), p.299.

Google Scholar

[23] C.E. Feltner and C. Laird: Acta Metall., Vol. 15 (1967).

Google Scholar