Overview of Fatigue Behaviour of Ultrafine-Grained Copper Produced by Severe Plastic Deformation

Abstract:

Article Preview

Fatigue behaviour of ultrafine-grained copper of purity 99.9 % produced by ECAP technique was studied in a broad region of stress amplitudes. Fatigue strength is by a factor of about 2 higher than that of conventional-grain-size copper in the broad region of fatigue lives from 6x103 to 2x1010 cycles. The grain structure is stable and undergoes only very marginal changes during cycling. Fatigue slip markings on specimen surface follow the trace of the shear plane of the last ECAP pass. Fatigue notch sensitivity is also higher than that of conventional-grain-size copper, but not dramatically. The cyclic stress-strain curve of studied copper is temperature insensitive, while its S-N curve is temperature dependent.

Info:

Periodical:

Materials Science Forum (Volumes 567-568)

Edited by:

Pavel Šandera

Pages:

9-16

Citation:

P. Lukáš et al., "Overview of Fatigue Behaviour of Ultrafine-Grained Copper Produced by Severe Plastic Deformation ", Materials Science Forum, Vols. 567-568, pp. 9-16, 2008

Online since:

December 2007

Export:

Price:

$38.00

[1] T.C. Lowe: JOM, Vol. 58 (2006), p.28.

[2] M.A. Meyers, A. Mishra and D.J. Benson: Progress Mat. Sci., Vol. 51 (2006), p.427.

[3] H.W. Höppel, M. Kautz, C. Xu, M. Murashkin, T.G. Langdon, R.Z. Valiev and H. Mughrabi: Int. J. Fatigue, Vol. 28 (2005), p.1001.

[4] A. Vinogradov: Mater. Sci. Forum, Vol. 503-504 (2006), p.267.

[5] A. Vinogradov and S. Hashimoto: Advanced Engng. Mater., Vol. 5 (2003), p.351.

[6] H. Mughrabi, H.W. Höppel and M. Kautz, in: Ultrafine Grained Materials IV, edited by Y.T. Zhu et al., The Minerals, Metals & Materials Society, (2006), p.1.

[7] P. Lukáš, L. Kunz and M. Svoboda: Mater. Sci. Eng. A, Vol. 391 (2005), p.337.

[8] L. Kunz, P. Lukáš and M. Svoboda: Mater. Sci. Eng. A, Vol. 424 (2006), p.97.

[9] P. Lukáš, L. Kunz and M. Svoboda: Met. Mat. Trans. A (2007), in print.

[10] M.C. Murphy: Fatigue Engng. Mater. Struct., Vol. 4 (1981), p.199.

[11] P. Lukáš and L. Kunz: Mater. Sci. Eng. A, Vol. 103 (1988), p.233.

[12] J. Awatani, K. Katagiri, A. Omura and T. Shiraishi: Met. Trans. A, Vol. 6 (1975), p.1029.

[13] H. Mughrabi, H.W. Höppel and M. Kautz: Scripta Mater., Vol. 51 (2004), p.807.

[14] S.R. Agnew, A.Y. Vinogradov, S. Hashimoto and J.R. Weertman: J. Electronic Mater., Vol. 28 (1999), p.1038.

[15] A. Vinogradov and S. Hashimoto: Mater. Trans., Vol. 42 (2001), p.74.

[16] H. Mughrabi and H.W. Höppel, in: Structure and Mechanical Properties of Nanophase Materials - Theory and Computer Simulation vs. Experiment, edited by D. Farkas et al., Materials Research Society, (2000), p. B2. 1. 1.

[17] S.R. Agnew and J.R. Weertman: Mat. Sci. Eng. A, Vol. 244 (1998), p.145.

[18] W.D. Pilkey: Peterson's Stress Concentration Factors (Wiley Interscience Publication, New York, 1997).

[19] P. Lukáš, L. Kunz, B. Weiss and R. Stickler: Fatigue Fract. Eng. Mater. Struct., Vol. 9 (1986), p.195.

[20] A. Seeger, in: Handbuch der Physik VII/2, edited by S. Flügge, Springer-Verlag, Berlin, (1958), p.115.

[21] Z.S. Basinski, A.S. Korbel and S.J. Basinski: Acta Metall., Vol. 28 (1980), p.191.

[22] C. Holste: Phil. Mag., Vol. 84 (2004), p.299.

[23] C.E. Feltner and C. Laird: Acta Metall., Vol. 15 (1967).

Fetching data from Crossref.
This may take some time to load.