Deposition of ISZO Films on Polymer Substrate Using Two Cathodes

Abstract:

Article Preview

The electrical, optical and mechanical properties were investigated for the In-Sn-Zn-O films deposited using ITO and ZnO targets, without substrate heating. Three types of ITO target, which are 90wt.% In2O3 : 10wt.% SnO2, 93wt.% In2O3 : 7wt.% SnO2, and 95wt.% In2O3 : 5wt.% SnO2, were used. The power of DC cathode equipped ITO target was fixed at 70W and the power of RF cathode equipped ZnO target was changed from 20W to 60W. The lowest resistivity (2.95x10-4 2cm) was obtained for the In-Sn-Zn-O films deposited under DC power of 70W of ITO (93wt.% In2O3 : SnO2 7wt.%) and RF power of 40W of ZnO target. It is confirmed that surface uniformity, electrical property, and mechanical durability were improved by introduction of Zn atom for all the ITO targets.

Info:

Periodical:

Edited by:

Byungsei Jun, Hyungsun Kim, Chanwon Lee, Soo Wohn Lee

Pages:

181-184

Citation:

J. R. Lee et al., "Deposition of ISZO Films on Polymer Substrate Using Two Cathodes", Materials Science Forum, Vol. 569, pp. 181-184, 2008

Online since:

January 2008

Export:

Price:

$38.00

[1] H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics Publishing Bristol and Philadelphia, (1995) 134 and 219.

[2] I. Ham, C.G. Granqvist, J. Appl. Phys. Vol. 60 (1986) R123.

[3] R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. Vol. 83 (1998) p.2631.

[4] L.J. Meng, F. Placido, Surf. Coat. Technol. Vol. 166 (2003) p.44.

[5] F.O. Adurodija, H. Izumi, T. Ishiihara, H. Yoshioka, K. Moroyama, K. Murai, Vacuum Vol. 67 (2002) p.209.

[6] Y.C. Park, Y.S. Kim, H.K. Seo, S.G. Ansani, H.S. Shin, Surf. Coat. Technol. Vol. 161 (2002) p.62.

[7] R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, Appl. Phys. Lett. Vol. 82 (2003) p.3342.

DOI: https://doi.org/10.1063/1.1574400

[8] D.S. Liu, C.C. Wu, C.T. Lee, Jpn. J. Appl. Phys. Vol. 44 (2005) pp.5119-5121.

[9] J.R. Lee, D.G. Kim, G.H. Lee, Y.H. Park, P.K. Song, Met. Mater. -Int. (2007).

[10] T. Sasabayashi, N. Ito, E. Nishimura, M. Kon, P.K. Song, K. Utsumi, A. Kaijo, Y. Shigesato, Thin Solid Films. Vol. 445 (2003) pp.219-1000.

DOI: https://doi.org/10.1016/j.tsf.2003.08.047

[20] [40] [60] [80] 100 RF p o w e r.

W.

[20] W.

[30] W.

[40] W 200 400 600 800 1000.

[20] [40] [60] [80] 100 R F p o w e r.

W.

[30] W.

[40] W.

[50] W.

[60] W 200 400 600 800 1000.

[20] [40] [60] [80] 100 RF p o w e r.

W.

[30] W.

[40] W.

[50] W.

[60] W Wavelength (nm) Transmittance (%) Transmittance (%) Transmittance (%) Wavelength (nm) Wavelength (nm) (a) ITO (10wt. %) (b) ITO (7wt. %) (c) ITO (5wt. %) 200 400 600 800 1000.

[20] [40] [60] [80] 100 RF p o w e r.

W.

[20] W.

[30] W.

[40] W 200 400 600 800 1000.

[20] [40] [60] [80] 100 R F p o w e r.

W.

[30] W.

[40] W.

[50] W.

[60] W 200 400 600 800 1000.

[20] [40] [60] [80] 100 RF p o w e r.

W.

[30] W.

[40] W.

[50] W.

[60] W Wavelength (nm) Transmittance (%) Transmittance (%) Transmittance (%) Wavelength (nm) Wavelength (nm) (a) ITO (10wt. %) (b) ITO (7wt. %) (c) ITO (5wt. %).