Compositional Factors Affecting the Oxidation Behavior of Pt-Modified γ-Ni+γ’-Ni3Al-Based Alloys and Coatings

Article Preview

Abstract:

Many high-temperature coatings rely on the formation of a continuous and adherent thermally grown oxide (TGO) scale of α-Al2O3 for extended resistance to degradation. For instance, the durability and reliability of thermal barrier coating (TBC) systems in gas turbines are critically linked to the oxidation behavior and stability of an alumina-forming β-NiAl-based bond coat. This study focuses primarily on the development of unique Pt+Hf-modified γ′-Ni3Al+γ-Ni coating compositions that form highly adherent, slow-growing TGO scales during both isothermal and cyclic oxidation at high temperature. Recent findings on the isothermal and cyclic oxidation behavior of γ′+γ alloys and coatings will be discussed, with particular emphasis on the effects of Pt, Al and Hf contents and distributions. Inferred reasons for the observed “Pt effect” will also be presented.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 595-598)

Pages:

239-247

Citation:

Online since:

September 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: