[1]
Simpson, W.; Medeiros, J. et. al.; IME. Inc. A new course for integrating design, manufacturing and production into the engineering curriculum,. Int. J. Engineering Education. Vol. 20, Num. 5, pp.764-766, (2004).
DOI: 10.18260/1-2--9339
Google Scholar
[2]
Lamancusa, J.S.; Jorgesen, J.E.; Zayas-Castro, J.L.; The learning factory: a new approach to integrating design and manufacturing into the engineering curriculum,. J. Engineering Education. Vol. 88, Num. 6, pp.103-102, (1997).
DOI: 10.1002/j.2168-9830.1997.tb00272.x
Google Scholar
[3]
Shah, J.J.; Sadowky, J.S.; Macia N.F. et. al.; The virtual corporation: simulating real World collaborative design in a university setting". ASME Design and Methology - DTM, 95 Boston MA. Vol. 2, pp.507-515, (1995).
Google Scholar
[4]
Carranti, F.J.; A manufacturing enterprise for undergraduates,. Successes in M.E. Design Education, ASME International Congress and Exposition, Nashville, TN. pp.7-12, November (1999).
Google Scholar
[5]
Simpson, T.W.; Experiences with a hands-on activity to contrast craft production and mass production in the classroom,. International Journal of Engineering Education. Vol. 19, Num. 2, (2003).
Google Scholar
[6]
Liu, J.; Landers, R.G.; Integrated Modular Machine Tool Simulation for Education in Manufacturing Automation,. Int. J. Engineering Education. Vol. 20, No. 4, pp.594-611, (2004).
Google Scholar
[7]
Lee, W. B.; Li, J. G.; Cheung, C. F.; Development of a Virtual Training Workshop in Ultraprecision Machining,. Int. J. Engineering Ed. Vol. 18, No. 5, pp.584-596, (2002).
Google Scholar
[8]
Fernández, C.; Vicente M. A.; Jiménez L.M.; Virtual Laboratories for Control Education: a Combined Methodology,. Int. J. Engineering Education. Vol. 21, No. 6, pp.1059-1067, (2005).
Google Scholar
[9]
Peek, C. S.; Crisalle, O. D.; et al; The Virtual Control Laboratory Paradigm: Architectural Design Requirements and Realization through a DC-Motor Example,. Int. J. Engineering Education. Vol. 21, No. 6, pp.1134-1147, (2005).
Google Scholar
[10]
Ma B.; Guo ZY.; Zhou HM.; Li DQ; Virtual plastic injection molding based on virtual reality technique,. International Journal of Advanced Manufacturing Technology 31 (11-12): 10921100 Feb (2007).
DOI: 10.1007/s00170-005-0282-8
Google Scholar
[11]
Shen C.; Wang L.; Li Q.; Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method,. Journal of Materials Processing Technology 183 (2007) 412-418.
DOI: 10.1016/j.jmatprotec.2006.10.036
Google Scholar
[12]
Ivester R.; Danai K; Automatic tuning and regulation of injection molding by the Virtual Search Method,. Journal of Manufacturing Science and Engineering-Transactions of the ASME 120 (2): 323-329 May (1998).
DOI: 10.1115/1.2830130
Google Scholar
[13]
Yang, D.; Danai, K.; Kazmer D.; A Knowledge-Based Tuning Method for Injection Molding Machines,. Transactions of the ASME Vol. 123, 682-691 Nov (2001).
DOI: 10.1115/1.1382596
Google Scholar
[14]
Su, Y.; Shah, J.; Lin, L.; Implementation and analysis of polymeric microestructure replication by Micro Injection Moulding,. Journal of Micromechanics and Microengineering. Vol. 14, pp.415-422, (2004).
DOI: 10.1088/0960-1317/14/3/015
Google Scholar
[15]
Polymer Training Limited PTL (PICAT). Halesfield 7 Telford. Shropshire TF7 4NA. United Kingdom. http: /www. ptlonline. org. uk/home. htm.
Google Scholar
[16]
Moldflow Corporation. 492 Old Connecticut Path, Suite 401. Framingham, MA 01701 USA. http: /www. moldflow. com/stp.
Google Scholar
[17]
Beaumont, J. P.; et al; Successful injection molding: process, design, and simulation,. Hanser (2002).
Google Scholar
[18]
Osswald, T.A.; Injection molding handbook,. Hanser (2001).
Google Scholar
[19]
Naranjo C., A; et al; Injection molding processing data,. Hanser (2001).
Google Scholar