The Optimal Model of Tool Paths Generation for Pocket Milling

Abstract:

Article Preview

This paper describes an integrated method to determine optimal cutting parameters for milling pocket based on minimum cutting time. The main constraints entailed in real cutting, such as chatter free, uncut free tool paths, cutter and machine tool limitations, are included into the optimal model. The optimal parameters (depth of cut, width of cut, spindle speed) are inserted into the tool paths generation directly for four kinds of conventional cutting modes (Zig and Zig-Zag parallel cutting mode, inwards and outwards spiral pattern modes). According to the fact that the first cut in every cut level is slotting milling, the milling areas are divided into slotting milling area and general milling area. This dynamically corrected tool paths generation method changes the order of conventional tool paths, so different cutting parameters are used in slotting milling and general milling areas. The case study has demonstrated that the proposed methods can identify the optimal milling conditions and generate tool paths automatically and result in minimum milling time.

Info:

Periodical:

Materials Science Forum (Volumes 626-627)

Edited by:

Dongming Guo, Jun Wang, Zhenyuan Jia, Renke Kang, Hang Gao, and Xuyue Wang

Pages:

201-206

DOI:

10.4028/www.scientific.net/MSF.626-627.201

Citation:

X. Huang and Z.X. Lin, "The Optimal Model of Tool Paths Generation for Pocket Milling", Materials Science Forum, Vols. 626-627, pp. 201-206, 2009

Online since:

August 2009

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.