Effect of SiC Particles on the Machining of Aluminum/SiC Composite

Article Preview

Abstract:

The objective of this study is to experimentally investigate the effect of reinforced SiC particles on the machining of Aluminum/SiC composite (15% volume ratio of SiC particles with average grain size 15m). Aluminum/SiC composite and aluminum metal were milled by a tungsten carbide endmill in this study. Based on the surface observation and surface roughness inspection, it is found that the machining parameters of Aluminum/SiC composite have optimum values, and that the surface roughness of aluminum/SiC composite is smaller than that of aluminum metal. when feedrate and depth of cut are smaller than limited values, satisfactory surface finish can be attainable, however, as the depth of cut and feedrate increases, the microcracks are first initiated at the interface of SiC particles and aluminum matrix, and then periodically macrocracks are formed on the machined surface, The damage mechanism during the machining of aluminum/SiC are discussed in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 626-627)

Pages:

219-224

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Durante, G. Rutelli and F. Rabezzana: Surface and Coatings Technology, Vol. 94-95(1997), pp.632-640.

DOI: 10.1016/s0257-8972(97)00521-5

Google Scholar

[2] Y.K. Chou and J. Liu: Surface and Coatings Technology, Vol. 200(2005), pp.1872-1878.

Google Scholar

[3] C.J.E. Andrewes, H.Y. Feng, W.M. Lau: Joural of Materials Processing Technology, Vol. 102 (2000), pp.25-29.

Google Scholar

[4] L.A. Looney, J.M. Monaghan, P.O. Reilly and D.M.R. Taplin: Journal of Materials Processing Technology, Vol. 33 (1992), pp.453-468.

Google Scholar

[5] A. Manna, B. Bhattacharayya: Journal of Materials Processing Technology, Vol. 140 (2003), pp.711-716.

Google Scholar

[6] J. Paulo Davim, A. Monteiro Baptista: Journal of Materials Processing Technology, Vol. 103(2004), pp.417-423.

Google Scholar

[7] A. Pramanik, L.C. Zhang, J.A. Arsecularatne: International Journal of Machine Tools and Manufacture, Vol. 46(2006), pp.1795-1803.

DOI: 10.1016/j.ijmachtools.2005.11.012

Google Scholar

[8] C.J.E. Andrewes, H.Y. Feng, W.M. Lau, Journal of Materials Processing Technology, Vol. 102 (2000), pp.25-29.

Google Scholar

[9] A.R. Chambers: Composites, Part A , Vol. 27 (1996), pp.143-147.

Google Scholar

[10] R. Polini, F. Casadei, P.D. Antonio and E. Traversa: Surface and Coatings Technology, Vol. 166 (2003), pp.127-134.

Google Scholar

[11] M. El-Gallab and M. Sklad: Journal of Materials Processing Technology, Vol. 83 (1998), pp.151-159.

Google Scholar

[12] J.P. Davim: Journal of Materials Processing Technology, Vol. 132 (2003), pp.340-344.

Google Scholar

[13] J.P. Davim: Journal of Material Processing Technology, Vol. 128 (2002), pp.100-105.

Google Scholar

[14] J.P. Davim and A.M. Baptista: Journal of Material Processing Technology, Vol. 103 (2000), pp.417-423.

Google Scholar

[15] R.M. Hooper, J.L. Henshall and A. Klopfer: International Journal of Refractory Metals and Hard Materials, Vol. 17 (1999), pp.103-109.

DOI: 10.1016/s0263-4368(98)00040-7

Google Scholar

[16] P.J. Heath: Journal of Materials Processing Technology, Vol. 116 (2001), pp.30-38.

Google Scholar

[17] K.C. Chan, C.F. Cheung, M.V. Ramesh and W.B. Lee: International Journal of Mechanical Sciences, Vol. 43 (2001), p.2047-(2068).

Google Scholar

[18] H.A. Kishawy, S. Kannan and M. Balazinski: Annals of the CIRP, Vol. 53 (2004), pp.91-94.

Google Scholar

[19] A. Pramanik, L.C. Zhang, J.A. Arsecularatne: International Journal of Machine Tools and Manufacture, Vol. 46 (2006), pp.1795-1803.

DOI: 10.1016/j.ijmachtools.2005.11.012

Google Scholar

[20] S. Ozden, R. Ekici and F. Nair: Composites, Part A, Vol. 38 (2007), pp.484-494.

Google Scholar