Motion Model and Numerical Simulation of Fluid and Abrasive Particle in Near Wall Region

Abstract:

Article Preview

The paper discusses the near wall region of soft abrasive particle flow in weak force finish machining method. Turbulent flow morphology in near wall region of rectangular channel with different viscosity is numerically simulated and compared. Through the analysis of kinetic equation of abrasive particle, the abrasive particle motion trace of different diameter in turbulent flow with different viscosity is simulated and compared. The result reveals the condition under which the fluids with different viscosity can form Turbulent flow is different. The greater the viscosity is, the greater the velocity needed is. Also the quantitative relation of velocity and flow volume is available to determine the pump parameter in abrasive particle flow machining. Fluid at wall has pressure and shear stress on work piece. The greater the viscosity and velocity is, the greater the wall pressure and shear stress is. So it is helpful to make material removal on work piece surface. But the greater the viscosity is, the greater the velocity attenuation of abrasive particle is. Abrasive particle mainly move along the flow direction with the movement of fluid. The velocity attenuation of larger diameter abrasive particle is much than the smaller particle but the latter can maintain greater velocity in a longer distance favorable for collision with the work piece surface salient.

Info:

Periodical:

Materials Science Forum (Volumes 626-627)

Edited by:

Dongming Guo, Jun Wang, Zhenyuan Jia, Renke Kang, Hang Gao, and Xuyue Wang

Pages:

237-242

DOI:

10.4028/www.scientific.net/MSF.626-627.237

Citation:

S. M. Ji et al., "Motion Model and Numerical Simulation of Fluid and Abrasive Particle in Near Wall Region", Materials Science Forum, Vols. 626-627, pp. 237-242, 2009

Online since:

August 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.