Synthesis and Properties of Graded Porous Ti-TiO2 Multifunctional Composites Obtained by Different Processing Methods

Article Preview

Abstract:

Functionally graded materials for load bearing implants have a long history of academic development and an already high degree of maturity. Efforts are now undertaken to improve the biocompatibility and even induce bioactivity within the implant-bone interface by optimised surface nanostructure of porous ceramic and metalic layers grown or sintered on a metallic implant, in order to arrive at cementless implants capable of fast osteointegration and high interface strength. Several new methods for surface structure and composition modification are presented for Ti-alloy based implants: a nano-structuring of the surface by re-deposition of TiO2 using an ECR-Microwave Plasma treatment combined with ion bombardment on a sintered TiO2 ceramic surface, a multiscale modification of porous Ti-coatings by means of Micro-Arc-Oxidation, MAO, and a meso-structuring of the surface by means of a laser treatment. The goal is to establish a multi-functionality in such materials by formation of a morphological and compositional gradient spanning many dimensions. The applicability of these methods to real implants is discussed for a dental implant.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 631-632)

Pages:

141-146

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Koizumi, The Concept of FGM, in Proc. of the Second Int'l Symposium on FGM'92, Ceramic Transactions Vol. 34, Ed. J. B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir, American Ceramic Soc., 1993, page 3-10.

Google Scholar

[2] Y. Miyamoto, M. Niino, and M. Koizumi, FGM research programs in Japan, from structural to functional uses, in Proc. of the Fourth Int'l Symposium on FGM '96, Ed. I. Shiota, Y. Miyamoto, Elsevier Science B.V., Amsterdam, 1997, page 1-8.

DOI: 10.1016/b978-044482548-3/50002-0

Google Scholar

[3] F. Watari et al., Functionally graded dental implant composed of titanium and hydroxyapatite, in Proc. of the Third Int'l Symposium on Structural and Functional Gradient Materials, Ed. B. Ilschner, N. Cherradi, Presses Polytechniques et Universitaires Romandes, Lausanne, 1995, page 703-708.

Google Scholar

[4] F. Watari et al., Elemental mapping of functionally graded dental implant in biocompatibility tests, in Proc. of the Fourth Int'l Symposium on FGM '96, Ed. I. Shiota, Y. Miyamoto, Elsevier Science B.V., Amsterdam, 1997, page 749-759.

DOI: 10.1016/b978-044482548-3/50122-0

Google Scholar

[5] Long-Hao Lia, Y. -M.K., et al., Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2003. 25 (2004), page 2867-2875.

DOI: 10.1016/j.biomaterials.2003.09.048

Google Scholar

[6] A.P. Vincenzo Sollazzo et al., Genetic Effect of Anatase on Osteoblast-Like Cells. Journal of Biomedical Materials Research Part B: Applied Biomaterials, (2007).

Google Scholar

[7] T.J. Webster, R.W. Siegel, and R. Bizios, Osteoblast adhesion on nanophase ceramics. Biomaterials, Vol. 20 (13), 1999, page 1221-1227.

DOI: 10.1016/s0142-9612(99)00020-4

Google Scholar

[8] T.J. Webster et al., Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, Vol. 21, (17), 2000, page 1803-1810.

DOI: 10.1016/s0142-9612(00)00075-2

Google Scholar

[9] Heidenau, G.Z.F., Antiinfektiöse, biokompatible Titanoxid-Bschichtungen für Implantate sowie Verfahren zu deren Herstellung, in Fachtagung Biomaterialien - Innovative Oberflächen für Implantate. 2006: Würzburg.

Google Scholar

[10] F. Bauer, T. Schubert, M. Willert-Porada, Microwave decomposition of metal alkoxides to nanoporous metal oxides - a mechanistic study, in Advances In Microwave and High Frequency Processing, Ed. M. Willert-Porada, Springer-Verlag Berlin, 2006, ISBN 3540432523, pp.633-644.

DOI: 10.1007/978-3-540-32944-2_69

Google Scholar

[11] I. Song Park et al. Electrochimica Acta, Vol. 53 (2007), pp.863-870.

Google Scholar

[12] Meddelcoat report 04-2008, IMMG, Udine, It.

Google Scholar

[13] Meddelcoat report, 09-2007, Chai of Materials Processing, University of Bayreuth, Germany.

Google Scholar

[14] E. Fuchs, M. Willert-Porada, ECR-Plasma modification of TiO2 ceramics for implants, ICOPS 2008, June 2008, Karlsruhe, Germany.

Google Scholar