Synthesis, Structure and Properties of Niobium Aluminum Oxynitride and Tantalum Based Compound Prepared through Citrate Route

Article Preview

Abstract:

The oxynitrides with composition A1-xBx(OyNz) (A: Nb and Ta, B: Al) were studied in preparation through citrate route and NH3 nitridation. In the case of Nb, the product of x = 0.5 prepared at 1000 °C was a new compound of a = 0.435 nm with rock salt structure. In this structure, Al and Nb atoms were distributed randomly in the cation sites. Anion sites were also randomly occupied by oxide and nitride ions with some amount of vacancy. The chemical composition was represented as Nb0.56Al0.44O0.38N0.37□0.25 from Rietveld refinement and oxygen/ nitrogen measurement. In the case of Ta, monoclinic Ta3N5 crystallized with a small amount of Ta4N5 impurity at x = 0.5. Aluminum compound was co-present as amorphous impurity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 631-632)

Pages:

167-172

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Jansen and H.P. Letschert, Nature 404 (2000), p.980.

Google Scholar

[2] G. Hitoki, A. Ishikawa, T. Takada, J.N. Kondo, M. Hara and K. Domen, Chem. Lett. (2002), p.736.

Google Scholar

[3] S. Kikkawa, K. Nagasaka, T. Takeda, M. Bailey, T. Sakurai and Y. Miyamoto, J. Solid State Chem. 180 (2007), p. (1984).

Google Scholar

[4] S. Kikkawa, S. Ohtaki, T. Takeda, A. Yoshiasa, T. Sakurai and Y. Miyamoto, J. Alloys Compd. 450 (2008), p.152.

Google Scholar

[5] S. Yamamoto, S. Kikkawa, Y. Masubuchi, T. Takeda, H. Wolff, R. Dronskowski and A. Yoshiasa, Solid State Comm. 147 (2008), p.41.

DOI: 10.1016/j.ssc.2008.04.023

Google Scholar

[6] H.X. Willems, G. DE With, R. Metselaar, R.B. Helmholdt and K.K. Petersen, J. Mater. Sci. Lett. 12 (1993), p.1470.

Google Scholar

[7] M. Ish-Shalom, J. Mater. Sci. Lett. 1 (1982), p.147.

Google Scholar

[8] S. Kikkawa, N. Hatta and T. Takeda, J. Am. Ceram. Soc. 91 (2008), p.924.

Google Scholar

[9] W. Dai, W. Lin, A. Yamaguchi, J. Ommyoji, J. Yu and Z. Zou, J. Ceram. Soc. Jpn. 115 (2007), p.42.

Google Scholar

[10] N. Terao, Jpn. J. Appl. Phys. 4 (1965), p.353.

Google Scholar

[11] N. Terao, J. Less-Common Metals 23 (1971), p.159.

Google Scholar

[12] B. Scheerer, J. Crystal Growth 49 (1980), p.61.

Google Scholar

[13] V. Buscablia, F. caracciolo, M. Ferretti, M. Minguzzi and R. Musenich, J. Alloys Compd. 266 (1998), p.201.

Google Scholar

[14] G. Brauer, J. Less-Common Metals 2 (1960), p.131.

Google Scholar

[15] A. Tyutyunnik, J. Grins and G. Svensson, J. Alloys Compd. 278 (1998), p.83.

Google Scholar

[16] X.Z. Chen and H.A. Eick, J. Solid State Chem. 127 (1996), p.19.

Google Scholar

[17] N. Terao, Jpn. J. Appl. Phys. 10 (1971), p.248.

Google Scholar

[18] C.M. Fang, E. Orham, G.A. de Wijs, H.T. Hintzen, R.A. de Groot, R. Marchand, J.Y. Saillard and G. de With, J. Mater. Chem. 11 (2001), p.1248.

DOI: 10.1039/b005751g

Google Scholar

[19] D. Armytage and B.E.F. Fender, Acta Cryst. B 30 (1974), p.809.

Google Scholar

[20] H. Schilling, M. Lerch, A. Borger, K.D. Becker, H. Wolff, R. Dronskowski, T. Bredow, M. Tovar and C. Baehtz, J. Solid State Chem. 179 (2006), p.2416.

DOI: 10.1016/j.jssc.2006.04.036

Google Scholar

[21] F. Izumi and T. Ikeda, Mater. Sci. Forum 198 (2000), p.321.

Google Scholar