The Influence of Work Hardening, Internal Stresses, and Stress Relaxation on Ductility of Ultrafine Grained Materials Prepared by Severe Plastic Deformation

Article Preview

Abstract:

Ultrafine grained materials prepared by methods of severe plastic deformation appear to show good ductility for their high strength. To a large extent this ductility enhancement, for the given strength, is shown to correspond to the fracture ductility and not the uniform ductility at maximum stress. The improved fracture ductility is often due to the refinement or removal of the coarse defects that act as sites for failure nucleation. The low work hardening rate inherent to the very fine microstructures produced by severe plastic deformation essentially condemns such materials to very low uniform ductility. Stress relaxation occurring during unloading after processing, and changes of internal stresses during reloading for mechanical testing, appear to play a significant role in determining deformation behaviour near the onset of plastic flow, and this can affect the measured uniform strain.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

263-272

Citation:

Online since:

November 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.G. Morris, in: Mechanical Behaviour of Nanostructured Materials, Trans. Tech. Publications Ltd., Switzerland, (1998).

Google Scholar

[2] C.C. Koch, D.G. Morris, K. Lu and A. Inoue: Mater. Res. Soc. Bull. 24 (1999) 54.

Google Scholar

[3] D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhao and R.Z. Valiev: Appl. Phys. Letts. 79 (2001) 611.

Google Scholar

[4] Y. Wang, M. Chen, F. Zhou and E. Ma: Nature 419 (2002) 912.

Google Scholar

[5] E. Ma: Scripta Mater. 49 (2003) 663.

Google Scholar

[6] Y.M. Wang and E. Ma: Appl. Phys. Letts. 83 (2003) 3165.

Google Scholar

[7] Q. Wei, L. Keeskes, T. Jiao, K.T. Hartwig, K.T. Ramesh and E. Ma: Acta Mater. 52 (2004) 1859.

Google Scholar

[8] Y.M. Wang and E. Ma: Acta Mater. 52 (2004) 1699.

Google Scholar

[9] R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci. 51 (2006) 881.

Google Scholar

[10] M. Dao, L. Lu, R.J. Asaro, J.T. M De Hosson and E. Ma: Acta Mater. 55 (2007) 4041.

Google Scholar

[11] C.C. Koch: Scripta Mater. 49 (2003) 657.

Google Scholar

[12] R.Z. Valiev: Mater. Sci. Eng. A234-236 (1997) 59.

Google Scholar

[13] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. 45 (2000) 103.

Google Scholar

[14] H.W. Kim, S.B. Kang, N. Tsuji and Y. Minamino: Acta Mater. 53 (2005) 1737.

Google Scholar

[15] S.V. Dobatkin, J.A. Szpunar, A.P. Zhilyaev, J. -Y. Cho and A.A. Kuznetsov: Mater. Sci. Eng. A462 (2007) 132.

Google Scholar

[16] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu and T.C. Lowe: J. Mater. Res. 17 (2002) 5.

Google Scholar

[17] B.Q. Han and T.G. Langdon: Mater. Sci. Eng. A410-411 (2005) 430.

Google Scholar

[18] S. Cheng, Y.H. Zhao, Y.T. Zhu and E. Ma: Acta Mater. 55 (2007) 5822.

Google Scholar

[19] Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon and Y.T. Zhu: Mater. Sci. Eng. A493 (2008) 123.

Google Scholar

[20] Y. Zhang, N.R. Tao and K. Lu: Acta Mater. 56 (2008) 2429.

Google Scholar

[21] Y.S. Li, Y. Zhang, N.R. Tao and K. Lu: Scripta Mater. 59 (2008) 475.

Google Scholar

[22] Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelwicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou and E.J. Lavernia: Scripta Mater. 59 (2008) 627.

Google Scholar

[23] M. Legros, B.R. Elliott, M.N. Rittner, J.R. Weertman and K.J. Hemker: Phil. Mag. A80 (2000) 1017.

Google Scholar

[24] I. Gutierrez-Urrutia, M.A. Muñoz-Morris and D.G. Morris: Mater. Sci. Eng. A394 (2005) 399.

Google Scholar

[25] I. Gutierrez-Urrutia, M.A. Muñoz-Morris and D.G. Morris: J. Mater. Res. 21 (2006) 329.

Google Scholar

[26] I. Gutierrez-Urrutia, M.A. Muñoz-Morris and D.G. Morris: Acta Mater. 55 (2007) 1319.

Google Scholar

[27] J. Wang, Y. Iwahishi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev and T.G. Langdon: Acta Mater. 44 (1996) 2973.

Google Scholar

[28] Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou and E.J. Lavernia: Appl. Phys. Letts: 92 (2008) 081903.

DOI: 10.1063/1.2870014

Google Scholar

[29] U.F. Kocks and H. Mecking: Prog. Mater. Sci. 48 (2003) 171.

Google Scholar

[30] T. Hasegawa, T. Yakou and U.F. Kocks: Mater. Sci. Eng. 81 (1986) 189.

Google Scholar

[31] I.A. Ovid´ko and A.G. Sheinerman: Acta Mater. 57 (2009) 2217.

Google Scholar

[32] I. Sabirov, M.R. Barnett, Y. Estrin and P.D. Hodgson: Scripta Mater. (2009) in press.

Google Scholar

[33] R. Lapovok, P.W.J. McKenzie, P.F. Thonson and S.L. Semiatin: Int. J. Mat. Res. 98 (2997) 325.

Google Scholar

[34] Z. Horita, T. Fujinami and T.G. Langdon: Mater. Sci. Eng. A318 (2001) 34.

Google Scholar

[35] C. Xu, Z. Szaraz, Z. Trojanova, P. Lukac and T.G. Langdon: Mater. Sci. Eng. A497 (2008) 206.

Google Scholar

[36] D. J: Alexander and I.J. Beyerlein: Mater. Sci. Eng. A410-411 (2005) 480.

Google Scholar

[37] M. Haouaoui, I. Karaman and H.J. Maier: Acta Mater. 54 (2006) 5477.

Google Scholar

[38] W. Wei, K.X. Wei and G.J. Fan: Acta Mater. 56 (2008) 4771.

Google Scholar