Numerical Simulation and Experimental Analysis of Laser Surface Remelting of AISI 304 Stainless Steel Samples

Article Preview

Abstract:

The aim of this work is to develop a heat transfer mathematical model based on the finite difference method in order to simulate temperature fields in the laser surface remelting process. Convective heat transfer in the remelted pool is taken into account by using the effective thermal conductivity approach. Experiments of laser surface remelting of AISI 304 austenitic stainless steel samples were carried out in the present investigation, and numerical simulations were applied for the CO2 laser machine operating parameters. The work also encompasses the analysis of microstructural and microhardness variations throughout the resulting treated and unmolten zones. This study permits to conclude that numerical simulation is a useful tool in setting the laser operating parameters, enabling pre-programming of the extent of the treated area.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

1119-1124

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. G. Watkins, M. A. McMahon, W. M. Steen, Mater. Sci. Eng. Vol. A231 (1997) p.55.

Google Scholar

[2] N. Cheung, M. C. F. Ierardi, A. Garcia, R. Vilar, Lasers Eng. Vol. 10 (2000) p.275.

Google Scholar

[3] A. Conde, R. Colaço, R. Vilar and J. de Damborenea, Mater. Des. Vol. 21 (2000) p.441.

Google Scholar

[4] M. Carbucichio, G. Palombarini, M. Rateo, G. Sambogna, Hyperfine Interact. Vol. 112 (1998) p.19.

DOI: 10.1023/a:1011007820797

Google Scholar

[5] S. Yang , Z. Wang , H. Kokawa , Y. S. Sato , Mater. Sci. Eng., A Vol 474 (2008) p.112.

Google Scholar

[6] S. C. Hsu, S. Kou, R. Mehrabian, Metall. Trans. B Vol. 11 (1980) p.29.

Google Scholar

[7] J. A. Sekhar, S. Kou, R. Mehrabian, Metall. Trans. A Vol. 14 (1984) p.1169.

Google Scholar

[8] C. Chan, J. Mazumder, M. M. Chen, Metall. Trans. A Vol 15 (1984) p.2175.

Google Scholar

[9] S. Kou, Y. H. Wang, Metall. Trans. A Vol. 17 (1986) p.2265.

Google Scholar

[10] A. F. A. Hoadley, M. Rappaz, M. Zimmerman, Metall. Trans. B Vol. 22 (1991) p.101.

Google Scholar

[11] G. J. Davies, R. S. Laki, I. G. Saucedo,Y. K. Shin, in: Perspectives in Metallurgical Development, University of Sheffield, Sheffield (1984), p.123.

Google Scholar

[12] R. L. Apps, D. R. Milner, British Welding Journal (1963) p.348.

Google Scholar

[13] F. P. Incropera, D. P. Dewitt Fundamentals of Heat and Mass Transfer (John Wiley & Sons, New York 1990).

Google Scholar

[14] R. W. Ruddle, The Solidification of Castings. (Institute of Metals, Series No. 7 1957).

Google Scholar

[15] R. D. Pehlke, A. Jeyarajan, H. Wada Summary of thermal properties for casting alloys and mold materials (Ann Arbor, University of Michigan, 1980).

Google Scholar

[16] O. V. Akgun, O. T. Inal, J. Mater. Sci. Vol. 30 (1995) p.6097.

Google Scholar

[17] R. Colaço, R. Vilar, Scr. Mater. Vol 36 (1997) p.199.

Google Scholar