[1]
R.R. Riehl, T. Dutra: Development of an Experimental Loop Heat Pipe for Application in Future Space Missions. Applied Thermal Engineering, vol. 25 (2005), pp.101-112.
DOI: 10.1016/j.applthermaleng.2004.05.010
Google Scholar
[2]
R.R. Riehl, N. Santo: Loop Heat Pipe Performance Enhancement Using Primary Wick with Circumferential Grooves. Applied Thermal Engineering, vol. 28 (2008), pp.1745-1755.
DOI: 10.1016/j.applthermaleng.2007.11.005
Google Scholar
[3]
H.X. Peng, Z. Fan, J.R.G. Evans AND J.J.C. Busfield: Microstructure of ceramic foams. J. Eur. Ceram. Soc., vol. 20 (2000), pp.807-813.
DOI: 10.1016/s0955-2219(99)00229-0
Google Scholar
[4]
F. Tang, F. Fudouzi, Y. Sakka: Fabrication of Macroporous Alumina with Tailored Porosity Journal. American. Ceramic. Society, vol. 86 (2003), p.2050 - (2054).
DOI: 10.1111/j.1151-2916.2003.tb03607.x
Google Scholar
[5]
A.R. Studart, U.T. Gonzenbach, E. Tervoort: Processing routes to macroporous ceramics: A review. Journal American Ceramic Society, vol. 89 (2006), pp.1771-1789.
DOI: 10.1111/j.1551-2916.2006.01044.x
Google Scholar
[6]
F. Tang; H. Fudouzi; T. Uchikoshi; Y. Sakka. Preparation of porous materials with controlled pore size and porosity. J. Eur. Ceram. Soc, vol. 23 (2004), pp.341-344.
DOI: 10.1016/s0955-2219(03)00223-1
Google Scholar
[7]
Y. Jia, Y. Kanno, Z. Xie: New gelcasting process for alumina ceramics based on gelation of alginate, Journal European Ceramic Society, vol. 22 (1998), p.1911 - (1916).
DOI: 10.1016/s0955-2219(01)00513-1
Google Scholar
[8]
K. Ishizaki, S. Komarneni, M. Nanko: Porous materials process technology and applications. Dordrecht: Kluwer Institute of Technology, (1986).
Google Scholar
[9]
E.P. Santos, C.V. Santilli, S.H. Pulcinelli: Formation of zirconia foams using the thermostimulated sol-gel transition. Journal of Non-crystalline solids. Vol. 304 (2002), p.143150.
DOI: 10.1016/s0022-3093(02)01018-9
Google Scholar
[10]
O. Lyckfeldt, J.M.F. Ferreira: Processing of porous ceramics by starch consolidation. Journal of the European Ceramic Society vol. 18 (1998), pp.131-140.
DOI: 10.1016/s0955-2219(97)00101-5
Google Scholar
[11]
G.A.B. Silva, F. Vernilli, S. Ribeiro: Comportamento de diversos defloculantes nas propriedades reológicas da alumina. In: Congresso Brasileiro de Cerâmica, Florianópolis. Anais Florianópolis ABCERAM, vol. 45 (2001), pp.1500901-1500910.
Google Scholar
[12]
I.R. Garcia, R. Salomão, V.C. Pandolfelli: Heterocoagulação como técnica para obtenção de cerâmicas porosas. Cerâmica vol. 51 (2005), pp.78-84.
DOI: 10.1590/s0366-69132005000200002
Google Scholar
[13]
M.M.M. Azevedo: Físico-Química de soluções de polímeros e surfactantes. Campinas. Instituto de Química da Unicamp. (2000).
Google Scholar
[14]
J. H Saunders, R.H. Hansen: The mechanism of foam formation, plastic foams: parte I. New York: Marcel Dekker, (1972).
Google Scholar
[15]
J.L. Saunders: Fenómenos interfaciales en dispersions polifásicas y en medios poros. Universidad de Los Andes Facultad de Ingenieria Escuela de Ingenieria Quimica Lab. Formulacion, Interfaces, Reología y Procesos Mérida-Venezuela (2002).
DOI: 10.22209/rt.ve2019a10
Google Scholar
[16]
M.M. Kiyoshi, M.G. Silva, V.C. Pandolfelli: A influência simultânea do teor de alumina, da porosidade total e da temperatura na condutividade térmica de refratários sílico-aluminosos e aluminosos. Cerâmica vol. 47 (2001), p.303.
DOI: 10.1590/s0366-69132001000300007
Google Scholar
[17]
Z. Deng, J Ferreira, Y. Tanaka, Y. Isoda: Microstructure and thermal conductivity of porous ZrO2 ceramics. Acta Materialia vol. 55 (2007), pp.3663-3669.
DOI: 10.1016/j.actamat.2007.02.014
Google Scholar
[18]
J.P. Holman: Transferência de calor. Sao Paulo: McGraw-Hill, (1983).
Google Scholar
[19]
J.H. Vuolo: Fundamentos da teoria dos erros, 2 a edição revista ampliada, 1996, Editora Edgard Blücher LTDA.
Google Scholar
[20]
D.R. Askeland: The science and engineering of materials, 3 a edition, PWS publishing company - Boston 1994, part IV.
Google Scholar