Thermal Conductivity of Porous Alumina-Zirconia Prepared by Foam Technique for Applications in Cooling Systems of Artificial Satellites

Abstract:

Article Preview

Porous ceramics are of great interest due to their numerous potential applications. The objective of the present investigation was to produce porous alumina with 3 mol % yttria-stabilized tetragonal zirconia (Y-TZP). This material will be used in cooling systems of satellites. To obtain the porous ceramics the direct foaming technique was used. This method is based on the preparation of a stable foam to which a slurry of alumina and zirconia is added. The mixture is then vigorously stirred for incorporation of air. The sintered ceramics were characterized by scanning electron microscopy, mercury porosimetry and thermal conductivity. The tests performed with the porous alumina-zirconia ceramic composite obtained by this method, showed low thermal conductivity values, high porosity and uniform microstructure with 20–100 µm open pores. The results show that the alumina-zirconia composites tested in this study have a potential for application in loop heat pipes of cooling systems of satellites.

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Edited by:

Luís Guerra ROSA and Fernanda MARGARIDO

Pages:

161-167

DOI:

10.4028/www.scientific.net/MSF.636-637.161

Citation:

A. C. O. Hirschmann et al., "Thermal Conductivity of Porous Alumina-Zirconia Prepared by Foam Technique for Applications in Cooling Systems of Artificial Satellites", Materials Science Forum, Vols. 636-637, pp. 161-167, 2010

Online since:

January 2010

Export:

Price:

$35.00

[1] R.R. Riehl, T. Dutra: Development of an Experimental Loop Heat Pipe for Application in Future Space Missions. Applied Thermal Engineering, vol. 25 (2005), pp.101-112.

DOI: 10.1016/j.applthermaleng.2004.05.010

[2] R.R. Riehl, N. Santo: Loop Heat Pipe Performance Enhancement Using Primary Wick with Circumferential Grooves. Applied Thermal Engineering, vol. 28 (2008), pp.1745-1755.

DOI: 10.1016/j.applthermaleng.2007.11.005

[3] H.X. Peng, Z. Fan, J.R.G. Evans AND J.J.C. Busfield: Microstructure of ceramic foams. J. Eur. Ceram. Soc., vol. 20 (2000), pp.807-813.

[4] F. Tang, F. Fudouzi, Y. Sakka: Fabrication of Macroporous Alumina with Tailored Porosity Journal. American. Ceramic. Society, vol. 86 (2003), p.2050 - (2054).

DOI: 10.1111/j.1151-2916.2003.tb03607.x

[5] A.R. Studart, U.T. Gonzenbach, E. Tervoort: Processing routes to macroporous ceramics: A review. Journal American Ceramic Society, vol. 89 (2006), pp.1771-1789.

DOI: 10.1111/j.1551-2916.2006.01044.x

[6] F. Tang; H. Fudouzi; T. Uchikoshi; Y. Sakka. Preparation of porous materials with controlled pore size and porosity. J. Eur. Ceram. Soc, vol. 23 (2004), pp.341-344.

DOI: 10.1016/s0955-2219(03)00223-1

[7] Y. Jia, Y. Kanno, Z. Xie: New gelcasting process for alumina ceramics based on gelation of alginate, Journal European Ceramic Society, vol. 22 (1998), p.1911 - (1916).

DOI: 10.1016/s0955-2219(01)00513-1

[8] K. Ishizaki, S. Komarneni, M. Nanko: Porous materials process technology and applications. Dordrecht: Kluwer Institute of Technology, (1986).

[9] E.P. Santos, C.V. Santilli, S.H. Pulcinelli: Formation of zirconia foams using the thermostimulated sol-gel transition. Journal of Non-crystalline solids. Vol. 304 (2002), p.143150.

DOI: 10.1016/s0022-3093(02)01018-9

[10] O. Lyckfeldt, J.M.F. Ferreira: Processing of porous ceramics by starch consolidation. Journal of the European Ceramic Society vol. 18 (1998), pp.131-140.

DOI: 10.1016/s0955-2219(97)00101-5

[11] G.A.B. Silva, F. Vernilli, S. Ribeiro: Comportamento de diversos defloculantes nas propriedades reológicas da alumina. In: Congresso Brasileiro de Cerâmica, Florianópolis. Anais Florianópolis ABCERAM, vol. 45 (2001), pp.1500901-1500910.

[12] I.R. Garcia, R. Salomão, V.C. Pandolfelli: Heterocoagulação como técnica para obtenção de cerâmicas porosas. Cerâmica vol. 51 (2005), pp.78-84.

DOI: 10.1590/s0366-69132005000200002

[13] M.M.M. Azevedo: Físico-Química de soluções de polímeros e surfactantes. Campinas. Instituto de Química da Unicamp. (2000).

[14] J. H Saunders, R.H. Hansen: The mechanism of foam formation, plastic foams: parte I. New York: Marcel Dekker, (1972).

[15] J.L. Saunders: Fenómenos interfaciales en dispersions polifásicas y en medios poros. Universidad de Los Andes Facultad de Ingenieria Escuela de Ingenieria Quimica Lab. Formulacion, Interfaces, Reología y Procesos Mérida-Venezuela (2002).

DOI: 10.20965/jaciii.2001.p0307

[16] M.M. Kiyoshi, M.G. Silva, V.C. Pandolfelli: A influência simultânea do teor de alumina, da porosidade total e da temperatura na condutividade térmica de refratários sílico-aluminosos e aluminosos. Cerâmica vol. 47 (2001), p.303.

DOI: 10.1590/s0366-69132001000300007

[17] Z. Deng, J Ferreira, Y. Tanaka, Y. Isoda: Microstructure and thermal conductivity of porous ZrO2 ceramics. Acta Materialia vol. 55 (2007), pp.3663-3669.

DOI: 10.1016/j.actamat.2007.02.014

[18] J.P. Holman: Transferência de calor. Sao Paulo: McGraw-Hill, (1983).

[19] J.H. Vuolo: Fundamentos da teoria dos erros, 2 a edição revista ampliada, 1996, Editora Edgard Blücher LTDA.

[20] D.R. Askeland: The science and engineering of materials, 3 a edition, PWS publishing company - Boston 1994, part IV.

In order to see related information, you need to Login.