The Effect of Ti Addition on the Properties of Al-B4C Interface: A Microstructural Study

Article Preview

Abstract:

In the present work, Al-B4C composites were produced by casting route at 850°C and titanium-containing flux was used to overcome the wetting problem between B4C and liquid aluminium metal. The microstructure of matrix/reinforcement interface was investigated using SEM studies with or without Ti added composites. The reaction layer was also characterized with EDS analysis and X-ray mapping. It was found from the microstructural observations by high resolution field emission gun SEM (FEG-SEM) that the wetting issue was effectively solved by the formation of very thin (80-180 nm in thickness) Ti-C and Ti-B reaction layers.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

192-197

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tokaji, K., Effect of stress ratio on fatigue behaviour in SiC particulate-reinforced aluminium alloy composite, Fatigue Fract. Eng. Mater. Struct. 28, 539-545.

DOI: 10.1111/j.1460-2695.2005.00894.x

Google Scholar

[2] Lopez, V.H., Scoles, A., Kennedy, A.R., The thermal stability of TiC particles in an Al7wt. %Si alloy, Mater. Sci. & Eng. A356 (2003) 316-325.

DOI: 10.1016/s0921-5093(03)00143-6

Google Scholar

[3] Khan, K.B., Kutty, T.R.G., Surappa, M.K., Hot hardness and indentation creep study on Al- 5% Mg alloy matrix-B4C particle reinforced composites, Mater. Sci. & Eng. A 427 (2006) 76-82.

DOI: 10.1016/j.msea.2006.04.015

Google Scholar

[4] Lee, K.B., Ahn, J.P., Kwon, H., Characteristics of AA6061/BN composite fabricated by pressureless infiltration technique, Metall. Mater. Trans. A 32A (2001) (4), 1007-1018.

DOI: 10.1007/s11661-001-0358-5

Google Scholar

[5] Kerti, I., Toptan, F., Microstructural variations in cast B4C-reinforced aluminium matrix composites (AMCs), Mater. Lett. 62 (2008) 1215-1218.

DOI: 10.1016/j.matlet.2007.08.015

Google Scholar

[6] Ipek, R., Adhesive wear behaviour of B4C and SiC reinforced 4147 Al matrix composites (Al/B4C-Al/SiC), J. Mater. Procng. Technol. 162-163 (2005) 71-75.

DOI: 10.1016/j.jmatprotec.2005.02.207

Google Scholar

[7] Bedir, F., Characteristic properties of Al-Cu-SiCp and Al-Cu-B4Cp composites produced by hot pressing method under nitrogen atmosphere, Mater. & Design 28 (2007) 1238-1244.

DOI: 10.1016/j.matdes.2006.01.003

Google Scholar

[8] Kalkanli, A., Yılmaz, S., Synthesis and characterization of aluminum alloy 7075 reinforced with silicon carbide particulates, Mater. & Design 29 (2008) 775-780.

DOI: 10.1016/j.matdes.2007.01.007

Google Scholar

[9] Kerti, I. , Production of TiC reinforced-aluminum composites with the addition of elemental carbon, Mater. Lett. 59 (2005) 3795-3800.

DOI: 10.1016/j.matlet.2005.06.032

Google Scholar

[10] Zhang, H., Ramesh, K. T., Chin, E.S.C., High Strain Rate Response of Aluminium 6092/B4C Composites, Mater. Sci. and Eng., A 384 (2004) 26-34.

DOI: 10.1016/j.msea.2004.05.027

Google Scholar

[11] Aizenshtein, M., Froumin, N., Shapiro-Tsoref, E., Dariel, M.P., Frage, N., Wetting and interface phenomena in the B4C/(Cu-B-Si) system, Scripta Mater. 53 (2005) 1231-1235.

DOI: 10.1016/j.scriptamat.2005.08.006

Google Scholar

[12] Jung, J., Kang, S., Advances in Manufacturing Boron Carbide-Aluminum Composites, J. Am. Ceram. Soc., 87.

Google Scholar

[1] 47-54 (2004).

Google Scholar

[13] Zhu, X., Dong, H., Lu, K., Coating different thickness nickel-boron nanolayers onto boron carbide particles, Surf. & Coat. Technol. 202 (2008) 2927-2934.

DOI: 10.1016/j.surfcoat.2007.10.021

Google Scholar

[14] Shrestha, N.K., Kawai, M., Saji, T., Co-deposition of B4C particles and nickel under the influence of a redox-active surfactant and anti-wear property of the coatings, Surf. & Coat. Technol. 200 (2005) 2414- 2419.

DOI: 10.1016/j.surfcoat.2004.08.192

Google Scholar

[15] Zhang, Z., Chen, X. -G., Charette, A., Particle distribution and interfacial reactions of Al- 7%Si-10%B4C die casting composite, J. Mater. Sci. (2007) 42: 7354-7362.

DOI: 10.1007/s10853-007-1554-5

Google Scholar

[16] Shorowordi, K.M., Laoui, T., Haseeb, A. S. M. A., Celis, J. P., Froyen, L., Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study, J. Mater. Procng. Technol. 142 (2003) 738-743.

DOI: 10.1016/s0924-0136(03)00815-x

Google Scholar

[17] Kennedy, A.R., Brampton, B., The Reactive Wetting and Incorporation of B4C Particles into Molten Aluminium, Scripta Mater., 44 (2001)1077-1082.

DOI: 10.1016/s1359-6462(01)00658-3

Google Scholar

[18] Halverson, D.C., Pyzik, A.J., Aksay, I.A., Snowden, W.E., Processing of Boron CarbideAluminum Composites, J. Am. Ceram. Soc., 72.

Google Scholar

[5] 775-80 (1989).

Google Scholar

[19] Kennedy, A.R., Karantzalis, A.E., The incorporation of ceramic particles in molten aluminium and the relationship to contact angle data, Mater. Sci. & Eng. A264 (1999) 122-129.

DOI: 10.1016/s0921-5093(98)01102-2

Google Scholar

[20] D.C. Halverson, A.J. Pyzik, I.A. Aksay, Boron carbide aluminum and boron carbide-reactive metal cermets, US Patent no. 4, 605, 440, (1986).

Google Scholar

[21] Toptan, F., Kilicarslan, A., Karaaslan, A., Cigdem, M., Kerti, I., Optimization of particle addition conditions in production of Al-B4C composites by casting route, 14th Int. Metall. & Mater. Cong., October 16th-18th, 2008 Istanbul (In Turkish).

Google Scholar

[22] Shen, P., Zou, B., Jin, S., Jiang, Q., Reaction mechanism in self-propagating high temperature synthesis of TiC-TiB2/Al composites from an Al-Ti-B4C system, Mater. Sci. & Eng. A 454- 455 (2007) 300-309.

DOI: 10.1016/j.msea.2006.11.055

Google Scholar