Highly Luminescent CdTe Nanocrystals Synthesized in Aqueous Solution and Self-Assembled on Polyelectrolyte Multilayers

Article Preview

Abstract:

CdTe nanocrystals have been synthesized in aqueous solution at 92oC under open-air conditions. During the reaction, aliquots of the samples were taken at different growth times and used to obtain their UV-Vis absorbance and photoluminescence spectra in order to estimate the nanocrystal size. The absorption peaks are located around 459 nm for 1 h, 478 nm for 2 h, 491 nm for 4 h, 532 nm for 7 h and 610 nm for 94 h of growth time. The mean nanocrystal size for these samples is 2 nm, 2.2 nm, 2.3 nm, 2.6 nm and 3.4 nm, respectively, according to the theoretical calculations of 1s1/2 – 1s3/2 excitonic transition. Finally, CdTe nanocrystals were assembled using layer-by-layer technique on glass substrates, using PDDA as cationic polyelectrolyte and negatively charged CdTe nanocrystals. The Raman spectroscopy shows that CdTe nanocrystals preserve the nanoparticle properties after being assembled.

You might also be interested in these eBooks

Info:

[1] M. Nirmal and L. Brus: Acc. Chem. Res. Vol. 32 (1999), p.407.

Google Scholar

[2] C. R. Kagan, C. B. Murray and M. G. Bawendi: Phys. Rev. B Vol. 54 (1996), p.8633.

Google Scholar

[3] M. C. Schlamp, X. Peng and A. P. Alivisatos: J. Appl. Phys. Vol. 82 (1997), p.5837.

Google Scholar

[4] M. Gao, C. Lesser, S. Kirstein, H. Möhwald, A. L. Rogach and H. Weller, J. Appl. Phys. Vol. 87 (2000), p.2297.

Google Scholar

[5] N. C. Greenham, X. Peng and A. P. Alivisatos: Phys. Rev. B Vol. 54 (1996), p.17628.

Google Scholar

[6] K. Barnham, J. L. Marques, J. Hassard and P. O´Brien: Appl. Phys. Lett. Vol. 76 (2000), p.1197.

Google Scholar

[7] M. T. Harrison, S. V. Kershaw, M. G. Burt, A. L. Rogach, A. Kornowski, A. Eychmüller and H. Weller: Pure Appl. Chem. Vol. 72 (2000).

Google Scholar

[8] S. V. Kershaw, M. T. Harrison, A. L. Rogach and A. Kornowski: IEEE J. Select. Topics Quantum Electron. Vol. 6 (2000), p.534.

DOI: 10.1109/2944.865109

Google Scholar

[9] X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung and S. Nie: Nat. Biotechnol. Vol. 22 (2004), p.969.

Google Scholar

[10] X. H. Gao and S. M. Nie: Trends Biotechnol. Vol. 21 (2003), p.371.

Google Scholar

[11] T. M. Jovin: Nat. Biotechnol. Vol. 21 (2003), p.32.

Google Scholar

[12] C. B. Murray, D. J. Norris and M. G. Bawendi: J. Am. Chem. Soc. Vol. 115 (1993), p.8706.

Google Scholar

[13] N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller and H. Weller: J. Phys. Chem. B Vol. 106 (2002), p.7177.

DOI: 10.1021/jp025541k

Google Scholar

[14] N. Gaponik, D. V. Talapin, A. L. Rogach, A. Eychmüller and H. Weller: Nano Lett. Vol. 2 No. 8 (2002), p.803.

Google Scholar

[15] D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller: Nano Lett. Vol. 1 (2001), p.207.

Google Scholar

[16] B. O. Dabbousi, M. G. Bawendi, O. Onitsuka and M. F. Rubner: Appl. Phys. Lett. Vol. 66 (1995), p.1316.

DOI: 10.1063/1.113227

Google Scholar

[17] M. Y. Gao, B. Richter and S. Kirstein: Adv. Mater. Vol. 9 (1997), p.802.

Google Scholar

[18] H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi and M. F. Rubner: J. Appl. Phys. Vol. 83 (1998), p.7965.

Google Scholar

[19] D. Decher: Science Vol. 277 (1997), p.1232.

Google Scholar

[20] J. Schmitt and G. Decher: Adv. Mater. Vol. 9 (1997), p.61.

Google Scholar

[21] J. H. Fendler and F. C. Meldrum: Adv. Mater. Vol. 7 (1995), p.607.

Google Scholar

[22] N. A. Kotov: MRS Bull. Vol. 26 (2001), p.992.

Google Scholar

[23] T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann and N. Gaponik: Appl. Phys. Lett. Vol. 84 (2004), p.2904.

DOI: 10.1063/1.1702136

Google Scholar

[24] C. A. Constantimne, K. M. Gattas-Asfura, S. V. Mello, G. Crespo, V. Rastoqi, T. C. Cheng, J. J. Defarnk and R. M. Leblanc: Langmuir Vol. 19(2003), p.9863.

Google Scholar

[25] F. Caruso, R. A. Caruso and H. Mohwals: Science Vol. 282 (1998), p.1111.

Google Scholar

[26] Z. Gu, L. Zou, Z. Fang, W. Zhou and X. Zhong: Nanotechnology Vol. 19 (2008), p.135604.

Google Scholar

[27] A.L. Efros and A.L. Efros: Fizika i Tekhnika Poluprovodnikov Vol. 16 (1982), p.1209.

Google Scholar

[28] L.E. Brus: J. Chem. Phys. Vol. 80 (1984), p.4403.

Google Scholar

[29] A.L. Rogach, L. Katsikas, A. Kornowski, A. Su, A. Eychmuller and H. Weller: Ber. Bunsenges. Phys. Chem. Vol. 100 (1996), p.1772.

Google Scholar

[30] D. Schooss, A. Mews, A. Eychmuller and H. Weller: Phys. Rev. B Vol. 49 (1994), p.17072.

Google Scholar

[31] M. Gao, S. Kirstein, B. Richter, H. Möwald, A. L. Rogach, A. Kornowski, A. Eychmüller and H. Weller: J. Phys. Chem. B Vol. 102 (1998), p.8360.

DOI: 10.1021/jp9823603

Google Scholar

[32] H. Zhang, Z. Zhou, B. Yang and M. Y. Gao: J. Phys. Chem. B Vol. 107 (2003), p.8.

Google Scholar

[33] A. L. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möwald, A. Eychmüller, H. Weller: Adv. Mater. Vol. 12 (2000), p.333.

DOI: 10.1002/(sici)1521-4095(200003)12:5<333::aid-adma333>3.0.co;2-x

Google Scholar

[34] E. Hao, H. Zhang, B. Yang, H. Ren and J. C. Shen: J. Colloid Interface Sci. Vol. 238 (2001), p.285.

Google Scholar

[35] D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase and H. Weller: J. Am. Chem. Soc. Vol. 124 (2002), p.5782.

Google Scholar

[36] H. Bao, Y. Gong, Z. Li and M. Gao: Chem. Mater. Vol. 16 (2004), p.3853.

Google Scholar

[37] J. Y. Zhang and W. W. Yu: Appl. Phys. Lett. Vol. 89 (2006), pp.123108-1.

Google Scholar

[38] A. M. de Paula, L. C. Barbosa, C. H. B. Cruz, O. L. Alves, J. A. Sanjurjo and C. L. Cesar: Appl. Phys. Lett. Vol. 69 (1996), p.357.

Google Scholar