Effect of Mechanical Activation on Ti-50Ni Powder Blends Reactivity

Article Preview

Abstract:

In the present study, equiatomic powder blends of Ni and Ti were mechanically activated for a short period of time in a planetary ball mill using different levels of energy input. The characterization of the mechanically activated materials was achieved by scanning electron microscopy, X-ray diffraction, differential thermal analysis and chemical analysis (oxygen and nitrogen measurements). During mechanical activation no phase transformation was induced and the high temperature reaction between Ni and Ti elemental powders was shifted to lower temperatures. Moreover, the temperature and the intensity of the exothermic reaction, i.e. the reactivity observed in the powder blends, decreased with the increase in the level of milling energy input. A maximum oxygen content of 0.39 wt% was measured after mechanical activation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

544-549

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Otsuka and X.B. Ren: Intermetallics Vol. 7 (1999), p.511.

Google Scholar

[2] M. Igharo and J.V. Wood: Powder Metall Vol. 28 (1985), p.131.

Google Scholar

[3] M. Whitney, S.F. Corbin and R.B. Gorbet: Acta Mater Vol 56 (2007), p.559.

Google Scholar

[4] C. Zanotti, P. Giuliani, A. Terrosu, S. Gennari and F. Maglia: Intermetallics Vol 15 (2007), p.404.

DOI: 10.1016/j.intermet.2006.08.002

Google Scholar

[5] A. Biswas, Acta Mater Vol 53 (2005), p.1415.

Google Scholar

[6] B. Yuan, C.Y. Chung and M. Zhu, Mater Sci Eng A Vol. 382 (2004), p.181.

Google Scholar

[7] M. Bram, A. Ahmad-Khanlou, A. Heckmann, B. Fuchs, H.P. Buchkremer and D. Stöver: Mater Sci Eng A Vol. 337 (2002), p.254.

DOI: 10.1016/s0921-5093(02)00028-x

Google Scholar

[8] A.M. Locci, R. Orrù, G. Cao and Z.A. Munir: Intermetallics Vol. 11 (2003), p.555.

Google Scholar

[9] F. Neves, A. Cunha, I. Martins, J.B. Correia, M. Oliveira and E. Gaffet: Microsc Microanal Vol. 14 (S3) (2008), p.13.

DOI: 10.1017/s1431927608089241

Google Scholar

[10] F. Neves, A. Cunha, I. Martins, J.B. Correia, M. Oliveira and E. Gaffet: Mater Sci Forum Vol. 587-588 (2008), p.625.

Google Scholar

[11] F. Neves, I. Martins, J.B. Correia, M. Oliveira and E. Gaffet: Mater Sci Eng A Vol 473 (2008), p.336.

Google Scholar

[12] F. Neves, I. Martins, J.B. Correia, M. Oliveira and E. Gaffet: Intermetallics Vol 15 (2007), p.1623.

Google Scholar

[13] F. Neves, I. Martins, J.B. Correia, M. Oliveira and E. Gaffet: Intermetallics Vol 16 (2008), p.889.

Google Scholar

[14] R. Valiev: Nat Mater Vol. 3 (2004), p.511.

Google Scholar

[15] S. Suryanarayana: Prog Mater Sci Vol. 46 (2001), p.1.

Google Scholar

[16] L.L. Ye, Z.G. Liu, K. Raviprasad, M.X. Quan, M. Umemoto and Z.Q. Hu: Mater Sci Eng A Vol 241 (1998), p.290.

Google Scholar

[17] Y.W. Gu, C.W. Goh, L.S. Goi, C.S. Lim, A.E.W. Jarfors, B.Y. Tay and M.S. Yon: Mater Sci Eng A Vol. 392 (2005), p.222.

Google Scholar

[18] A. Takasaki: Phys Stat Sol Vol. 169 (1998), p.183.

Google Scholar

[19] T. Mousavi, M.H. Abbasi and F. Karimzadeh: Mater Lett Vol. 63 (2008), p.786.

Google Scholar

[20] Shape Memory Alloys, edited by Hiroyasu Funakubo, volume 1 of Precision Machinery and Robotics, chapter, 2, Gordon and Breach Science Publishers (1987).

Google Scholar