Electronic Stress Tensor Study of Aluminum Nanostructures for Hydrogen Storage

Article Preview

Abstract:

We report the new structures of aluminum hydrides derived from the Al4 tetrahedral cages. We perform ab initio quantum chemical calculation for these new aluminum hydrides. Our calculation of binding energies of the new aluminum hydrides reveal that stability of these hydrides increases as more hydrogen atoms are adsorbed, while stability of Al-H bonds decreases. We also calculate electronic stress tensor to evaluate the chemical bonds of these hydrides. As a result, we find that the bonds of the Al4 tetrahedral cage are strengthened as more hydrogen atoms are adsorbed on the aluminum hydrides. Our calculation of the potential energy surfaces and the regional chemical potential show that hydrogen atoms are likely to adsorb on bridge site at first.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

1137-1142

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Read, J. Petrovic, G. Ordaz, and S. Satyapal, Mater. Res. Soc. Symp. Proc. 885, A05-01 (2006).

Google Scholar

[2] Report by ACIL Tasman and Parsons Brinckerhoff for Australian Government: National Hydrogen Study, (2003).

Google Scholar

[3] Argonne National Laboratory. Report on Basic Energy Sciences Workshop on Hydrogen Production, Storage, and Use Basic Research Needs for the Hydrogen Economy, May 13-15, (2003).

Google Scholar

[4] A. Grubisic, X. Li, S. T. Stokes, J. Cordes, G. F. Gantefor, K. H. Bowen, B. Kiran, P. Jena, R. Burgert, and H. Schonockel, J. Am. Chem. Soc., 129, 5969 (2007).

Google Scholar

[5] A. Goldberg and I. Yarovsky. Phys. Rev. B 75, 195403 (2007).

Google Scholar

[6] M. J. Frisch et al, Gaussian 03, Revision B. 05, Gaussian, Inc., Pittsburgh PA (2003).

Google Scholar

[7] M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988).

Google Scholar

[8] M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 275 (1990).

Google Scholar

[9] M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 275 (1990).

Google Scholar

[10] M. Head-Gordon and T. Head-Gordon, Chem. Phys. Lett. 220, 122 (1994).

Google Scholar

[11] S. Saebo and J. Almlof, Chem. Phys. Lett. 154, 83 (1989).

Google Scholar

[12] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

Google Scholar

[13] D. R. Hamann, Phys. Rev. B 40, 2980 (1989).

Google Scholar

[14] R. C. Binning Jr. and L. A. Curtiss, J. Comp. Chem. 11, 1206 (1990).

Google Scholar

[15] L. A. Curtiss, M. P. McGrath, J. -P. Blaudeau, N. E. Davis, R. C. Binning Jr., and L. Radom, J. Chem. Phys. 103, 6104 (1995).

Google Scholar

[16] M. P. McGrath and L. Radom, J. Chem. Phys. 94, 511 (1991).

Google Scholar

[17] A. Tachibana, Theor. Chem. Acc. 102, 188 (1999).

Google Scholar

[18] A. Tachibana, J. Chem. Phys. 115, 3497 (2001).

Google Scholar

[19] A. Tachibana, in Stress Induced Phenomena in Metallization, edited by S. P. Baker, (American Institute of Physics, New York, 2002), p.105.

Google Scholar

[20] A. Tachibana, in Reviews in Modern Quantum Chemistry, A Celebration in the Contributions of Robert Parr, edited by K. D. Sen, (World Scientific, Singapore, 2002), Chap. 45, p.1327.

Google Scholar

[21] A. Tachibana, in Fundamental World of Quantum Chemistry, A Tribute to the Memory of Per-Olov Löwdin, edited by E. J. Brändas and E. S. Kryachko, (Kluwer Academic, Dordrecht, 2003), 2, 211.

DOI: 10.1007/978-94-010-0113-7

Google Scholar

[22] A. Tachibana, Int. J. Quant. Chem. 100, 981 (2004).

Google Scholar

[23] A. Tachibnana, J. Mol. Model. 11, 301 (2005).

Google Scholar

[24] P. Szarek and A. Tachibana, J. Mol. Model., 13, 651 (2007).

Google Scholar

[25] P. Szarek, Y. Sueda, and A. Tachibana, J. Chem. Phys., 129, 94102 (2008).

Google Scholar

[26] P. Szarek, K. Urakami, C. Zhou, H. Cheng, and A. Tachibana, J. Chem. Phys., 130, 084111 (2009).

Google Scholar

[27] M. Senami, K. Ichikawa, K. Doi, P. Szarek, K. Nakamura, and A. Tachibana, Molecular Regional DFT program package, ver. 3 (Tachibana Lab., Kyoto University, Kyoto, 2008).

Google Scholar