Enhanced Hydrogen Storage in MWCNTs Decorated by Electroless Nickel Nanoparticles Deposited in Supercritical CO2 Bath

Article Preview

Abstract:

Nano-sized nickel particles were dispersed on multi-walled carbon nanotubes (MWCNTs) via an improved electroless deposition route using a supercritical CO2 fluid. The microstructure, chemical composition and crystallinity of the Ni-decorated CNTs were examined using a transmission electron microscope (TEM), an X-ray energy dispersive spectrometer (EDS), and an X-ray diffractometer (XRD), respectively. The analytical results indicate that, with assistance of the supercritical fluid, Ni nanoparticles with a diameter of approximately 10 nm can be uniformly dispersed on the surface of CNTs. The hydrogen storage capacity of the Ni-decorated CNTs was evaluated with a high-pressure microbalance at room temperature and under a hydrogen pressure of 6.89 MPa. The measured hydrogen adsorption amount of the Ni/CNTs nanocomposite was 1.06 wt%, which was much higher than 0.33 wt% found for the plain CNTs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

1148-1151

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Gao, N. Paterson, D. Dugwell and R. Kandiyoti: Energy & Fuels Vol. 22 (2008), p.463.

Google Scholar

[2] S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz: Catal. Toady Vol. 120 (2007), p.246.

Google Scholar

[3] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben: Nature Vol. 386 (1997), p.377.

DOI: 10.1038/386377a0

Google Scholar

[4] Q. Wang and J.K. Johnson: J. Phys. Chem. B Vol. 103 (1999), p.4809.

Google Scholar

[5] C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng and M.S. Dresselhaus: Science Vol. 286 (1999), p.1127.

Google Scholar

[6] F. Darkrim and D. Levesque: J. Phys. Chem. B Vol. 104 (2000), p.6773.

Google Scholar

[7] B.P. Tarasov, J.P. Maehlen, M.V. Lototsky, V.E. Mradyan and V.A. Yartys: J. Alloys Compounds Vol. 356/357 (2003), p.510.

DOI: 10.1016/s0925-8388(03)00143-9

Google Scholar

[8] N. Nishimiya, K. Ishigaki, M. Ikeda, Y. Hibi, T. Sakakibara, A. Matsumoto and K. Tsutsumi: J. Alloys Compounds Vol. 339 (2002), p.275.

DOI: 10.1016/s0925-8388(01)02007-2

Google Scholar

[9] A. Lueking and R.T. Yang: J. Catal. Vol. 206 (2002), p.165.

Google Scholar

[10] A. Lueking and R.T. Yang: AIChE J. Vol. 49 (2003), p.1556.

Google Scholar

[11] A. Lueking and R.T. Yang: Appl. Catal. A Vol. 265 (2004), p.259.

Google Scholar

[12] W. Pan, X. Zhang, S. Li, D. Wu and Z. Mao: Int. J. Hydrogen Energy Vol. 30 (2005), p.719.

Google Scholar

[13] A. Cao, C. Xu, J. Liang, D. Wu and B. Wei: Chem. Phys. Lett. Vol. 344 (2001), p.13.

Google Scholar

[14] A. Fukuoka, H. Araki, Y. Sakamoto, S. Inagaki, Y. Fukushima and M. Ichikawa: Inorg Chim. Acta. Vol. 350 (2003), p.371.

Google Scholar

[15] M. Charbonnier, M. Romand, Y. Goepfert, D. Leonard, F. Bessueille and M. Bouadi: Thin Solid Films Vol. 515 (2006), p.1623.

DOI: 10.1016/j.tsf.2006.05.032

Google Scholar

[16] J.P. Cheng, X.B. Zhang and Y. Ye: J. Solid State Chem. Vol. 179 (2006), p.91.

Google Scholar

[17] M. Hirscher and B. Panella: J. Alloy Compounds Vol. 404 (2005), p.399.

Google Scholar