Recrystallization Textures in Heavily Cold-Rolled Ni3Al Based Single Crystals

Article Preview

Abstract:

Texture evolution during recrystallization and grain growth was examined for a Ni3Al/Ni two-phase single crystal (binary Ni-18 at.% Al) 83% cold-rolled, then compared with that for a Ni3Al single-phase single crystal (Ni-24 at.% Al). The cold-rolled single crystal had a sharp {110}<001> (Goss) texture. When it was recrystallized at 873K, the texture changed into a complicated one consisting of several components. Most of them had a special rotation relationship to the original Goss texture, i.e. 40˚ about <111>, which special relationship was similarly observed in the single-phase case. The 40˚<111> texture became shaper with no quantitative change as the grain growth proceeded. This high stability of the recrystallized texture contrasted with the single-phase case in which the authors previously found that the texture returned to the original Goss texture. The difference was discussed based on the orientation analysis by an electron backscattered diffraction method.

You might also be interested in these eBooks

Info:

[1] N.S. Stoloff: Int. Mater. Rev. Vol. 34 (1989), p.153.

Google Scholar

[2] M. Demura, Y. Suga, O. Umezawa, K. Kishida, E.P. George and T. Hirano: Intermetallics Vol. 9 (2001), p.157.

DOI: 10.1016/s0966-9795(00)00121-7

Google Scholar

[3] M. Demura, K. Kishida, Y. Suga and T. Hirano: Metall. Mater. Trans. A Vol. 33A (2002), p.2607.

Google Scholar

[4] M. Demura, K. Kishida, Y. Suga, M. Takanashi and T. Hirano: Scripta Mater. Vol. 47 (2002), p.267.

Google Scholar

[5] H. Borodians'ka, M. Demura, K. Kishida and T. Hirano: Intermetallics Vol. 10 (2002), p.255.

Google Scholar

[6] D. Li, K. Kishida, M. Demura and T. Hirano: Intermetallics Vol. 16 (2008), p.1317.

Google Scholar

[7] K. Kishida, M. Demura, Y. Suga and T. Hirano: Phil. Mag. Vol. 83 (2003), p.3029.

Google Scholar

[8] Y. Xu, S. Kameoka, K. Kishida, M. Demura, A. -P. Tsai and T. Hirano: Mater. Trans. Vol. 45 (2004), p.3177.

Google Scholar

[9] Y. Xu, S. Kameoka, K. Kishida, M. Demura, A. -P. Tsai and T. Hirano: Intermetallics Vol. 13 (2005), p.151.

Google Scholar

[10] Y. Xu, S. Kameoka, K. Kishida, M. Demura, A. -P. Tsai and T. Hirano: Mater. Sci. Forum Vol. 475-479 (2005), p.755.

Google Scholar

[11] D. -H. Chun, Y. Xu, M. Demura, K. Kishida, M. -H. Oh, T. Hirano and D. -M. Wee: Catalysis Letters Vol. 106 (2006), p.71.

Google Scholar

[12] D. -H. Chun, Y. Xu, M. Demura, K. Kishida, D. -M. Wee and T. Hirano: J. Catalysis Vol. 243 (2006), p.99.

Google Scholar

[13] Y. Ma, Y. Xu, M. Demura, D.H. Chun, G. Xie and T. Hirano: Catalysis Letters Vol. 112 (2006), p.31.

Google Scholar

[14] Y. Ma, Y. Xu, M. Demura and T. Hirano: Applied Catalysis B: Environmental Vol. 80 (2008), p.15.

Google Scholar

[15] M. Demura, K. Kishida, Y. Xu and T. Hirano: Mater. Sci. Forum Vol. 467-470 (2004), p.447.

Google Scholar

[16] M. Demura, Y. Xu, K. Kishida and T. Hirano: Acta mater. Vol. 55 (2007), p.1779.

Google Scholar

[17] M. Demura, Y. Xu and T. Hirano: Mater. Sci. Forum Vol. 539-543 (2007), p.1513.

Google Scholar

[18] A. Baldan: J. Mater. Sci. Vol. 37 (2002), p.2379.

Google Scholar

[19] G. Gottstein and Shvindlerman: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (CRC Press, USA 1999).

DOI: 10.1201/9781420054361

Google Scholar

[20] R.D. Doherty: Metal Science Vol. 16 (1982), p.1.

Google Scholar